APPENDIX E

Hazardous Materials

A۱	0	pen	dix	E -	Hazardous	Materia	ls
----	---	-----	-----	-----	-----------	---------	----

THIS PAGE INTENTIONALLY LEFT BLANK

Table of Contents

Appendix E.1 Environmental Site Assessment Report

Appendix E.2 Final Site Inspection Report

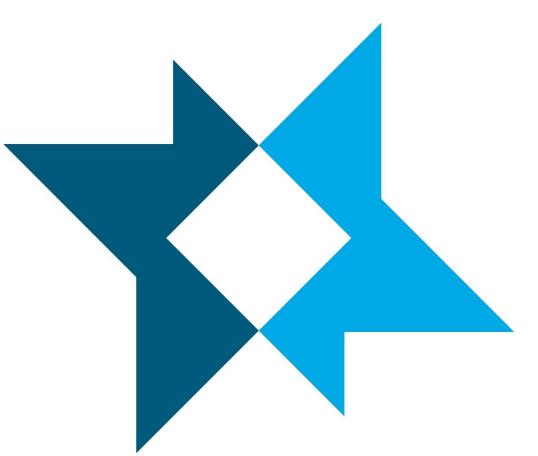
Appendix E.3 Preliminary Site Inspection Report

A۱	0	pen	dix	E -	Hazardous	Materia	ls
----	---	-----	-----	-----	-----------	---------	----

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix E - Hazardous Mate	erials		
			Appendix E.1
	Environm	ental Site As	sessment Report

A۱	0	pen	dix	E -	Hazardous	Materia	ls
----	---	-----	-----	-----	-----------	---------	----


THIS PAGE INTENTIONALLY LEFT BLANK

Report

Phase I Environmental Site Assessment

Sioux Gateway Airport 2-Acre Acquisition

RS&H Iowa, P.C.

Denver, CO 80237

July 2024

Project ID: 0023S049.00

Solving our clients' toughest science and engineering challenges.

8191 Birchwood Court, Suite L Johnston, IA 50131 (515) 254-1642 foth.com

July 31, 2024

Julie Barrow RS&H Iowa, P.C. 4582 S Ulster Street, Suite #1100 Denver, Colorado 80237

Re: Phase I Environmental Site Assessment - Sioux Gateway Airport, 2-Acre Acquisition

Dear Julie Barrow:

Please find the enclosed *Phase I Environmental Site Assessment (Phase I ESA) Report (Report)* for the 2-acre acquisition area located west of 5011 S. Patton Street and north-adjacent to the Sioux Gateway Airport located at 2403 Aviation Boulevard in Sioux City, Iowa. If you have any questions, please feel free to contact Elyse Kalber at elyse.kalber@foth.com or Gina Wilming at gina.wilming@foth.com.

Senior Project Manager

Sincerely,

Foth Infrastructure & Environment, LLC

Elyse Kalber

Environmental Scientist

Elipse Vulber

cc: Mike Collett, Sioux Gateway Airport

Enclosure

Distribution

No. of Copies Sent To

Electronic Ms. Julie Barrow

RS&H Iowa, P.C.

4582 S Ulster Street, Suite 1100

Denver, CO 80237

Electronic Mr. Mike Collett

Sioux Gateway Airport

405 6th Street

Sioux City, IA 51102

Project ID: 0023S049.00

Prepared for RS&H lowa, P.C.

4582 S Ulster Street, Suite #1100 Denver, CO 80237

Foth Infrastructure & Environment, LLC

July 2024

REUSE OF DOCUMENTS

This document (including any enclosures and attachments) has been prepared for the exclusive use and benefit of the addressee(s) and solely for the purpose for which it is provided. Any use outside of said purpose and/or by anyone other than the addressee(s) is at the unauthorized user's sole risk.

Table of Contents

		Page
List of	Abbrevi	ations, Acronyms, and Symbolsiv
Executi	ive Sum	ımaryv
Definiti	ons	vi
Statem	ent of E	Environmental Professionalsviii
1.	Introdu	rction1
	1.1	Purpose1
	1.2	Scope of Services1
	1.3	Significant Assumptions2
	1.4	Limitations and Exceptions3
	1.5	Vapor Intrusion Screening3
	1.6	Other Non-Scope Considerations
	1.7	Special Terms and Conditions4
	1.8	User Reliance4
2.	Site De	scription5
	2.1	Property Location and Legal Description5
	2.2	Site and Vicinity General Characteristics5
	2.3	Current Use of the Property5
	2.4	Descriptions of Structures, Road, and Other Improvements5
		2.4.1 Heating/Cooling Systems5
		2.4.2 Sewage Disposal6
		2.4.3 Source of Potable Water6
	2.5	Current Uses of Adjoining Property6
3.	User-Pi	rovided Information7
	3.1	Title Records
	3.2	Environmental Liens
	3.3	Specialized Knowledge7
	3.4	Commonly Known or Reasonably Ascertainable Information7
	3.5	Activity and Use Limitations

Table of Contents (continued)

			Page			
	3.6	Valuation Reduction of Environmental Issues	8			
	3.7	Owner, Property Manager, and Occupant Information	8			
	3.8	Reason for Performing the Phase I ESA	8			
	3.9	Other	8			
4.	Reco	rds Review	9			
	4.1	Standard Environmental Record Sources	9			
	4.2	Regulatory Agency File and Records Review	9			
	4.3	Additional Environmental Record Sources	10			
	4.4	Physical Setting Sources	11			
	4.5	Historical Use Information on the Property and Surrounding Areas	12			
	4.6	Previous Environmental Reports	13			
5.	Site F	Reconnaissance	14			
	5.1	Methodology and Limiting Conditions	14			
	5.2	General Site Setting	14			
	5.3	Exterior Observations	14			
	5.4	Interior Observations	15			
6.	Interv	views	16			
	6.1	Interview with Current Owner and Site Representative	16			
	6.2	Interviews with Past Owners, Occupants, or Operators	16			
	6.3	Interviews with Others with Historical Knowledge of the Property	16			
	6.4	Interviews with Local Government Agencies	16			
7.	Evalu	uation	17			
	7.1	Findings	17			
	7.2	Opinion	17			
	7.3	Deviations, Data Gaps, and Data Failures	18			
		7.3.1 Data Gaps	18			
		7.3.2 Data Failures	18			
	7.4	Limiting Conditions/Deviations	18			
	7.5	Additional Services	18			
8.	Conc	clusions	19			
9.	Reco	Recommendations and Non-Scope Services				
10.	References					

Table of Contents (continued)

	· · · · · · · · · · · · · · · · · · ·		
		Page	
	Tables		
Table 2-1 Table 2-2 Table 4-1 Table 4-2	Site Location Data Current Uses of Adjoining Property Records Review Surrounding Area	6 9	
Table 4-2 Additional Environmental Record Sources			
	Figures		
Figure 1 Figure 2 Figure 3	Site Location Site Layout Photo Locations		
	Appendices		
Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F	Environmental Risk Information Services (ERIS) Reports Client-Provided Information Historical Research Documentation Photograph Documentation Interview Documentation Qualifications of the Environmental Professionals		

List of Abbreviations, Acronyms, and Symbols

ACM asbestos-containing materials
AIP Airport Improvement Program

Airport Sponsor City of Sioux City

AST aboveground storage tank
ASTM ASTM International
AUL activity and use limitation
bgs below ground surface

CERCLA Comprehensive Environmental Response, Compensation and Liability Act

CFR Code of Federal Regulations

CREC controlled recognized environmental condition

EA Environmental Assessment

EC engineering control

EP Environmental Professional

ERIS Environmental Risk Information Services of Ontario, Canada

FAA Federal Aviation Administration FOIA Freedom of Information Act

Foth Foth Infrastructure & Environment, LLC

FUDS Formerly Used Defense Site
GIS Geographic Information System

HREC historical recognized environmental condition IDNR lowa Department of Natural Resources

LUST Landowner Liability Protections
leaking underground storage tank

NPL National Priorities List

NRCS Natural Resources Conservation Service

PCB polychlorinated biphenyls
PFOA perfluorooctanoic acid
PFOS perfluorooctane sulfonate

Phase I ESA Phase I Environmental Site Assessment recognized environmental condition

Report Phase I Environmental Site Assessment Report

RS&H RS&H Iowa, P.C.

RS&H and the Airport collectively, the Users of this Report

Sponsor

the Property two-acre acquisition area located west of 5011 S. Patton Street and north-

adjacent to the Sioux Gateway Airport and identified as a portion of

Parcel ID 884826200003

USACE United States Army Corps of Engineers

USEPA United States Environmental Protection Agency

USGS United States Geological Survey UST underground storage tank

Executive Summary

Foth Infrastructure & Environment, LLC (Foth) performed a Phase I Environmental Site Assessment (Phase I ESA) in conformance with the scope and limitations of ASTM International (ASTM) Standard Practice E1527-21 for the two-acre acquisition area located north-adjacent to the Sioux Gateway Airport and west of 5011 S. Patton Street, Sioux City, Woodbury County, Iowa (i.e., the Property). RS&H Iowa, P.C., (RS&H) and City of Sioux City (Airport Sponsor), which owns and operates the Sioux Gateway Airport, are preparing an Environmental Assessment (EA) associated with Runway 13-31 reconstruction and extension, parallel taxiway extension, land acquisition, and associated developments, which will be funded through the Federal Aviation Administration's (FAA's) Airport Improvement Program (AIP). As part of the project, the Airport Sponsor is purchasing a two-acre parcel identified as a portion of Parcel ID 884826200003, owned by the Charles H. Oehlerking Revocable Trust. Specifically, this Phase I ESA and *Report* have been prepared upon request of RS&H and the Airport Sponsor (collectively, the Users of this *Report*). No physical environmental sampling was performed. Additional services are discussed in Section 4.4 of this *Report*.

This ESA was performed under the conditions of, and in accordance with ASTM E1527-21, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, except as stated elsewhere in this Report. The Report contains the work performed, sources of information, and findings.

The order of presentation of findings is not specific to the potential liability associated with each finding. This ESA did not include sampling or analysis of any media.

Recognized Environmental Conditions (RECs)

There are no RECs associated with the Property.

Controlled Recognized Environmental Conditions (CRECs)

There are no CRECs associated with the Property.

Historical Recognized Environmental Conditions (HRECs)

There are no HRECs associated with the Property.

De minimis Conditions

There are no de minimis conditions associated with the Property.

The contents and order of the appendices to this *Report* are as follows:

Appendix A ERIS Reports
Appendix B Client-Provided Information

Appendix C Historical Research Documentation

Appendix D Photograph Documentation
Appendix E Interview Documentation

Appendix F Qualifications of the Environmental Professionals

Definitions

activity and use limitations (AUL) – legal or physical restrictions or limitations on the use of, or access to, a site or facility: (1) to reduce or eliminate potential exposure to hazardous substances or petroleum products in the soil, soil vapor, groundwater, and/or surface water on the property, or (2) to prevent activities that could interfere with the effectiveness of a response action, in order to ensure maintenance of a condition of no significant risk to public health or the environment. These legal or physical restrictions, which may include institutional and/or engineering controls, are intended to prevent adverse impacts to individuals or populations that may be exposed to hazardous substances and petroleum products in the soil, soil vapor, groundwater, and/or surface water on the property. (The term AUL is taken from ASTM Guide E2091-11 to include both legal (that is, institutional) and physical (that is, engineering) controls within its scope. Other agencies, organizations, and jurisdictions may define or utilize these terms differently).

biosolids – sewage sludge treated to meet the requirements in the EPA-issued Standards for the Use or Disposal of Sewage Sludge (40 C.F.R. Part 503) and intended to be applied to land as a soil amendment.

controlled recognized environmental condition (CREC) – recognized environmental condition affecting the subject property that has been addressed to the satisfaction of applicable regulatory authority or authorities with hazardous substances or petroleum products allowed to remain in place subject to implementation of required controls (for example, activity and use limitations or other property use limitations)

data failure – failure to achieve the historical research objective even after reviewing the standard historical resources that are reasonably ascertainable and likely to be useful. Data failure is one type of data gap.

data gap — a lack of or inability to obtain information required by this practice despite good faith efforts by the environmental professional to gather such information. Data gaps may result from incompleteness in any of the activities required by this practice, including, but not limited to, site reconnaissance (for example, an inability to conduct the site visit), and interviews (for example, an inability to interview the key site manager, regulatory officials, etc.). A significant data gap is a data gap that affects the ability of the environmental professional to identify a recognized environmental condition.

de minimis – a condition related to a release that generally does not present a threat to human health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies. Conditions determined to be de minimis conditions are not RECs or CRECs.

engineering controls (EC) – physical modifications to a site or facility (for example, capping, slurry walls, or point of use water treatment) to reduce or eliminate the potential for exposure to hazardous substances or petroleum products in the soil or groundwater on the property. Engineering controls are a type of AUL.

historical recognized environmental condition (HREC) — a previous release of hazardous substances or petroleum products affecting the subject property that has been addressed to the satisfaction of the applicable regulatory authority or authorities and meeting unrestricted use criteria established by the applicable regulatory authority or authorities without subjecting the subject property to any controls (for example, activity and use limitations or other property use limitations). A historically recognized environmental condition is not a recognized environmental condition.

migrate/migration – for the purposes of this practice, "migrate" and "migration" refers to the movement of hazardous substances or petroleum products in any form, including, for example, solid and liquid at the surface or subsurface, and vapor in the subsurface. Vapor migration in the subsurface is described in

ASTM Guide E 2600; however, nothing in this practice should be construed to require application of the ASTM Guide E 2600 standard to achieve compliance with all appropriate inquiries.

recognized environmental condition (REC) – the presence of hazardous substances or petroleum products in, on, or at the subject property due to a release to the environment; (2) the likely presence of hazardous substances or petroleum products in, on, or at the subject property due to a release or likely release to the environment; or (3) the presence of hazardous substances or petroleum products in, on, or at the subject property under conditions that pose a material threat of a future release to the environment. De minimis conditions and historical recognized environmental conditions are not recognized environmental conditions.

users (Users) – the parties seeking to use ASTM E1527-21 to complete an ESA of the property. A User may include, without limitation, a potential purchaser of property, a potential tenant of property, an owner of property, a lender, or a property manager. The Users have specific obligations for completing a successful application of this practice as outlined in Section 6 of ASTM E1527-21.

Statement of Environmental Professionals

We declare that, to the best of our professional knowledge and belief, we meet the definition of Environmental Professional (EP), as defined in §312.10 of 40 CFR Part 312.

We have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the subject Property. We have developed and performed all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Elyse Kalber

Environmental Scientist

Elyse Vulber

Gina Wilming

Senior Project Manager

1. Introduction

Foth Infrastructure & Environment, LLC (Foth) performed a Phase I Environmental Site Assessment (ESA) in conformance with the scope and limitations of ASTM International (ASTM) Standard Practice E1527-21 for the two-acre acquisition area located west of 5011 S. Patton Street and north-adjacent to the Sioux Gateway Airport and identified as a portion of Parcel ID 884826200003 (i.e., the Property). The location of the Property is shown on the site map on Figure 1.

This Phase I ESA is developed in accordance with the basic elements as determined by the standard of care prevailing at the time the service was rendered in the area where it was rendered. Because standards of care can be identified only through retrospective inquiry, Foth has assumed that the standard of care is detailed by ASTM E1527-21. This standard allows for the use of previously completed ESAs.

1.1 Purpose

This *Phase I ESA Report* (*Report*) has been prepared at the request of RS&H lowa, P.C. (RS&H) on behalf of the City of Sioux City (Airport Sponsor), which owns and operates the Sioux Gateway Airport. RS&H and the Airport Sponsor are preparing an Environmental Assessment (EA) associated with the Runway 13-31 reconstruction and extension, parallel taxiway extension, land acquisition, and associated development, which will be funded through the Federal Aviation Administration's (FAA's) Airport Improvement Program (AIP). As part of the project, the Airport Sponsor is purchasing a 2-acre parcel consisting of agricultural land located north-adjacent to the airport and identified as a portion of Parcel ID 884826200003, owned by the Charles H. Oehlerking Revocable Trust. The purpose of this Phase I ESA is to evaluate whether present or historical on-site land use activities have adversely impacted the Property through environmental contamination. Adjoining properties are also evaluated to determine if they have adversely impacted the Property.

Charles H. Oehlerking, Trustee of the Charles H. Oehlerking Revocable Trust, currently owns the Property, and the Users are seeking Landowner Liability Protections (LLP) under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA).

1.2 Scope of Services

This Phase I ESA was performed in general accordance with ASTM E1527-21. This work consisted of the following tasks:

Task I - Records Review

Foth performed a review of reasonably ascertainable records pertaining to the site. Activities associated with a records review include the following:

- ◆ Physical Setting Resources, such as United States Geological Survey (USGS) topographic maps geologic and hydrogeologic sources, as outlined in Table 1 of ASTM E1527-21.
- ◆ Standard federal, state, and Tribal Environmental Record Sources within the standard minimum search distance, as outlined in Table 2 of ASTM E1527-21.
- Regulatory agency files and records, as appropriate.
- Additional federal, state, Tribal, and local Environmental Record Resources, as outlined in Table 3
 of ASTM E1527-21, as appropriate. This includes records including Brownfields lists, landfill and
 solid waste disposal sites, registered storage tanks, local land records for activity and use
 limitations (AULs), emergency release reports, and contaminated public wells.

- Historical Information Sources, including aerial photographs, fire insurance maps, local street directories, topographic maps, building department records, interviews, property tax files, and zoning/land use records.
- ◆ Uses of the Property back to the first developed use or 1940, whichever is earlier, as outlined in Section 8.3.8 of ASTM E1527-21. Use of adjoining properties and the surrounding area were also evaluated.

Task II - Site Reconnaissance

Foth performed a reconnaissance of the site to identify recognized environmental conditions (RECs) in connection with the Property. The reconnaissance consisted of visually and/or physically observing the site and any structures located on the Property to the extent possible. Potential areas of concern include:

- Features, activities, uses, and conditions
- Current and past uses of the property, adjoining properties, and the surrounding area
- Geologic, hydrologic, hydrologic, and topographic conditions
- Structures and other improvements
- Roads
- Potable water supply
- Hazardous substances and petroleum products
- Storage tanks
- Strong, pungent, or noxious odors
- Standing surface water and pools or sumps containing liquids likely to be hazardous substances or petroleum products
- Unidentified substance containers
- Polychlorinated biphenyl (PCB)-containing items
- Heating/cooling means
- Stains or corrosion on floors, walls, or ceilings
- Drains and sumps
- Pits, ponds, and lagoons
- Stained soil or pavement
- Stressed vegetation
- Solids waste
- Water/wastewater
- Wells
- Septic systems or cesspools

Task III - Interviews

Foth held discussions with representatives of the present and past Property owners and others who are knowledgeable regarding past or present site operations to obtain information indicating the presence of RECs at the Property.

Interviews were also conducted with state and/or local government officials to obtain information indicating the presence of RECs at the Property. Foth diligently endeavored to maintain confidentiality regarding the nature of this site investigation.

1.3 Significant Assumptions

This Phase I ESA has been performed in accordance with the following assumptions:

Foth performed this work in general accordance with ASTM E1527-21, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, except as stated elsewhere in this *Report*.

Foth has been duly informed by the Users of this *Report* and the owner of the Property as to the Property boundaries, to allow the site reconnaissance activities to be consistent with the ASTM E1527-21.

Railway and highway corridors where hazardous materials and petroleum products may be conveyed are ubiquitous. Unless information gained through site observations, interviews, or historical data reviews indicate the presence of a REC on that portion of a highway or railway on or adjacent to the Property, such thoroughfares will not be classified as a REC.

Agricultural land can be exposed to the use of pesticides and herbicides during its active use. Unless information gained through site observations, interviews, or historical data reviews indicate the presence of a REC associated with the use of such chemicals on or adjacent to the Property, the typical use of pesticides and herbicides on farm fields will not be classified as a REC.

1.4 Limitations and Exceptions

This *Report* was prepared under constraints of cost, time, and scope and reflects a limited investigation and evaluation, rather than a full, total, complete, or extensive assessment and evaluation. Our assessment was performed using the degree of care and skill ordinarily exercised under similar circumstances by Environmental Professionals (EPs) practicing in this or similar localities. No other warranty or guarantee, expressed or implied, is made as to the conclusions and professional advice included in this *Report*.

The findings of this *Report* are valid as of the date of the investigation. However, if this ESA has not been completed within 180 days prior to the date of acquisition of the Property or (for transactions not involving an acquisition) the date of the intended transaction, it may not satisfy the requirements of all appropriate inquiry. Certain information incorporated in this *Report* will only remain valid for six months, after which time it must be updated to meet the requirements of 40 Code of Federal Requirements (CFR) 312. Specifically, the following types of information have a 180-day shelf life: regulatory records review, site visit, interviews, specialized knowledge, and environmental liens. Finally, the findings of this *Report* may be invalidated wholly or partially by changes outside our control.

The assessment contained in this *Report* is based upon observation of conditions at the Property and/or information provided by the client and/or investigation of records, and it does not include sampling of soil, rock, groundwater, and surface water, air, on-site substances, or materials. Therefore, it is not possible to confirm the presence or absence of toxic or hazardous substances, wastes, or materials in the environments associated with the Property. No subsurface exploration has been performed as part of this Phase I ESA.

This *Report* is issued with the understanding that it is the responsibility of the owner(s) to ensure that the information and recommendations contained herein are brought to the attention of the appropriate regulatory agency(ies), if so required by law.

1.5 Vapor Intrusion Screening

While vapor intrusion screening, as defined by ASTM E2600-08, is not part of the scope of an ASTM E1527-21 Phase I ESA, the presence of vapors within a building that results from a "release into the environment" may be considered a REC.

1.6 Other Non-Scope Considerations

The Phase I ESA investigation is generally limited to releases of hazardous substances and petroleum compounds. It does not include non-scope considerations listed in Section 13 of ASTM E1527-21 or other emerging contaminants not defined as CERCLA hazardous substances. However, there may be other environmental issues or conditions that are outside the scope of this practice that the Users may wish to assess. A list of some of the non-scope considerations are as follows:

- Asbestos-containing building materials (ACMs)
- Biological agents
- Cultural and historical practices
- ♦ Ecological resources
- Endangered species
- Health and safety
- Indoor air quality unrelated to releases of hazardous substances or petroleum products into the environment
- Industrial hygiene
- Lead-based paint
- Lead in drinking water
- Mold
- PCB-containing building materials
- Radon
- Regulatory compliance
- Wetlands
- Substances not defined as hazardous substances, including some substances sometimes generally referred to as emerging contaminants. Note: the United States Environmental Protection Agency (USEPA) issued the final rule designating perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) as hazardous substances under CERLA on April 19, 2024. The final rule will be effective July 8, 2024. Since PFOA and PFOS have been designated as CERCLA hazardous substances, these compounds are included in the scope of this practice and will be evaluated for RECs.

There may be other standards or protocols for assessment of potential hazards and conditions associated with non-scope conditions. If the Users have elected to investigate a non-scope consideration, this will be covered as a separate report from this *Report*.

1.7 Special Terms and Conditions

No modifications to ASTM methodologies have been applied to the manner in which this Phase I ESA was to be conducted.

1.8 User Reliance

RS&H and the Airport Sponsor are the intended beneficiaries (i.e., Users) of this *Report* and are the only parties to which Foth has explained the risks involved and which have been involved in the shaping of the scope of services needed to satisfactorily manage those risks from the point of view of the Users of this *Report*. Accordingly, reliance on this *Report* by any party other than the intended Users would necessarily result in reliance on assumptions whose extent and nature would distort the meaning and impact of the findings and opinions related herein, resulting in possible misinterpretation of these findings and opinions and unwise actions based on those misinterpretations.

2. Site Description

2.1 Property Location and Legal Description

The following table presents additional site location data.

Table 2-1 Site Location Data

Property Characteristic	Property-Specific Information
Current Owner Name	Charles H. Oehlerking, Trustee of the Charles H. Oehlerking Revocable Trust
Property Address	West of 5011 S. Patton Street, Sioux City, Iowa
Parcel or Tax Number	Southern portion of 884826200003
Township/Parish	Sioux City
County	Woodbury
Nearest Intersection	S. Patton Street and Seaboard Triumph Parkway
Property Size (acres)	2.02 acres
Property Type & Class Code (i.e., Agricultural, Industrial, Commercial, or Residential)	General Industrial

2.2 Site and Vicinity General Characteristics

The Property is 2.02 acres consisting of farmland. The Property is situated north-adjacent to the Sioux Gateway Airport and west of 5011 S. Patton Street in Sioux City, Iowa. Surrounding land use in the immediate vicinity is comprised of the Sioux Gateway Airport, commercial facilities, and agricultural land. The topography of the Property is generally flat and gently slopes downward to the northwest, toward the Missouri River.

2.3 Current Use of the Property

The Property is currently agricultural land.

2.4 Descriptions of Structures, Road, and Other Improvements

At the time of the site visit, there were no structures present on the Property. In addition, there were no roads or utilities serving the Property. The remaining portion of Parcel ID 884826200003 is served by S. Patton Street, which is east of the Property. The Property layout is shown in the Site Layout on Figure 2.

2.4.1 Heating/Cooling Systems

There are no fuels or heating and cooling systems that exist at the Property.

2.4.2 Sewage Disposal

There are no apparent sewer services that serve the Property.

2.4.3 Source of Potable Water

There are no apparent potable water supply services on the Property.

2.5 Current Uses of Adjoining Property

Table 2-2, presented below, provides a description of the adjoining properties or those close to the boundaries of the Property. Adjoining properties are any real property or properties, the border of which is contiguous or partially contiguous with that of the Property, or that would be contiguous or partially contiguous with that of the Property but for a street, road, or other public thoroughfare separating them.

Table 2-2
Current Uses of Adjoining Property

Direction from Property	Adjacent Land Use Description
North and East	The property to the north and east is the remaining portion of Parcel ID 884826200003, which is currently agricultural land. Several farm buildings are located on the southeastern portion of the property.
South and West	The property to the south and west currently contains a runway and several buildings associated with the Sioux Gateway Airport, with vegetated land in the southern half of the parcel.
Southeast	The property to the southeast is currently vegetated land and part of the Sioux Gateway Airport property.

3. User-Provided Information

Section 6 of ASTM E1527-21 states that certain tasks that will help to determine the possibility of RECs associated with the Property are generally conducted by the Users of this *Report*, including the following:

- reviewing title records for environmental liens or AULs;
- considering awareness of any specialized knowledge (e.g., information about previous ownership or environmental litigation);
- experience related to RECs at the Property; or
- knowledge of a significant reduction in the purchase price of the site.

Information, as available, related to these items was provided to Foth by the Users of this *Report*, per the agreed-upon scope-of-work. A copy of the completed ASTM E1527-21 Phase I ESA User Questionnaire is included in Appendix B.

3.1 Title Records

Environmental Risk Information Services of Ontario, Canada (ERIS) completed a Chain of Title dating back to 1980. A copy of the chain of title report for the Property, dated April 26, 2024, is included in Appendix A. Based on the review of this chain of title report, the current site owner for the Property is Charles H. Oehlerking, Trustee of the Charles H. Oehlerking Revocable Trust.

3.2 Environmental Liens

An environmental lien search was conducted by ERIS. A copy of the environmental lien search report for the Property, dated April 26, 2024, is included in Appendix A. The environmental lien search report indicates that environmental liens were not found for the Property. No response was provided by the Users regarding environmental liens.

3.3 Specialized Knowledge

Information related to specialized knowledge that was material to RECs in connection with the Property was not provided by Users' representatives.

3.4 Commonly Known or Reasonably Ascertainable Information

Information that was commonly known or reasonably ascertainable within the local community about the Property that was material to RECs in connection with the Property was not provided by the Users' representatives.

3.5 Activity and Use Limitations

For information purposes, AULs are defined as legal or physical restrictions or limitations on the use of, or access to, a site or facility:

- 1. to reduce or eliminate potential exposure to hazardous substances or petroleum products in the soil or groundwater on the property, or
- to prevent activities that could interfere with the effectiveness of a response action, to ensure maintenance of a condition of no significant risk to public health or the environment. These legal or physical restrictions, which may include institutional and/or engineering controls (ECs), are intended to prevent adverse impacts to individuals or populations that may be

exposed to hazardous substances and petroleum products in the soil or groundwater on the Property.

As part of the environmental lien search, a search for AULs has been conducted by ERIS. A copy of the AULs search report for the Property, dated April 26, 2024, is included in Appendix A. The AULs search report did not identify AULs for the Property.

3.6 Valuation Reduction of Environmental Issues

Information related to valuation reduction of the Property was not provided by the Users' representatives. The Users indicated the Property was of fair market value.

3.7 Owner, Property Manager, and Occupant Information

Information regarding the ownership, tenants, and contact information of site representatives was provided by the Users of this *Report* for the purpose of conducting this Phase I ESA. The Property is currently owned by Charles H. Oehlerking, Trustee of the Charles H. Oehlerking Revocable Trust.

3.8 Reason for Performing the Phase I ESA

Foth understands that the Users requested this *Report* for the Property identified in Section 2.1, above, to identify, to the extent feasible, pursuant to the processes prescribed in ASTM E1527-21, RECs in connection with the Property. The Users are preparing an EA associated with the Runway 13-31 reconstruction and extension, parallel taxiway extension, land acquisition, and other development, which will be funded through AIP and FAA. As part of the project, the Airport Sponsor is purchasing the 2-acre acquisition area (i.e., Property), and the Users have requested this *Report* to be completed prior to acquisition of the Property.

The Users are seeking LLP under CERCLA. These protections, where desired, include bona fide prospective purchaser liability protection, contiguous property owner liability protection, and innocent landowner defense from CERCLA liability.

3.9 Other

Any additional User-provided information regarding the Property has been incorporated within the applicable sections of this *Report*.

4. Records Review

4.1 Standard Environmental Record Sources

Standard environmental record sources are defined in Section 8.2.1 of ASTM E1527-21. These records consist of selected federal and state environmental databases. ASTM also specifies the appropriate search distances from the Property for which these records should be reviewed. Foth retained the services of ERIS (the Vendor), to provide specified state and federal regulatory lists for potential sites of environmental concern located at or in the vicinity of the Property. The Vendor maintains a computerized Geographic Information System (GIS) listing of various state and federal databases in accordance with ASTM E1527-21. The database search was based upon ASTM-specified standard record sources. The specific databases and ASTM-specified search distances reviewed are identified in the Vendor's report, which is provided for review in Appendix A.

The Vendor's report includes various database information details on each of the facilities identified/geocoded within the specified radius. Occasionally, additional sites with potential RECs are identified but are not able to be mapped to specific locations due to insufficient or contradictory address information. These sites are also included in the Vendor's report as unmappable sites.

The Property was listed in the databases that were searched; however, further review of the location for the site listed at the Property indicated this site is associated with the Sioux Gateway Airport and does not include the Property. As a result, this site was included in the surrounding area records review. This site was reviewed in Table 4-1 for potential RECs, controlled recognized environmental conditions (CRECs), historical recognized environmental conditions (HRECs), or *de minimis* conditions associated with the Property. No unplottable sites were identified in the Vendor's report.

Table 4-1
Records Review Surrounding Area

Property and Map ID	Database Listing	Location and Distance	Comments
	FUDS	Unknown	Site is listed as a Formerly Used Defense Site (FUDS) Property. The Sioux City Municipal Airport was used as an Army Air Base from 1942 to 1948, then as an Air Force base from 1968 to 1969, when the property was reported as excess. According to the 2021 Management Action Plan, underground storage tanks (USTs) and petroleum issues are the subject of FUDS Program Involvement. After reviewing information provided by the Iowa Department of Natural Resources (IDNR), it was determined that no current or past USTs or leaking underground storage tanks (LUSTs) exist within the 0.5-mile radius of the Property. The Management Action Plan, as well as the airport UST records, are provided in Appendix B.

4.2 Regulatory Agency File and Records Review

Per Section 8.2.2 of ASTM E1527-21, if the target property or adjoining properties are identified on one or more of the standard environmental record sources, pertinent regulatory files and/or records associated with the listing should be reviewed in accordance with Sections 8.1.1 through 8.1.10 of the ASTM standard. The purpose of the regulatory file review is to obtain sufficient information to assist the EP in determining if a REC, CREC, HREC, or *de minimis* condition exists at the Property in connection with the

listing. If, in the EP's opinion, such a review is not warranted, the EP must explain within the *Report* the justification for not conducting the regulatory file review. As an alternative, the EP may review records from an alternative source (e.g., on-site records, user-provided records, records from local government agencies, and/or interviews with regulatory officials or other knowledgeable individuals) about the environmental conditions that resulted in the standard environmental record source listing.

The following searchable web-based databases were reviewed to verify the standard environmental record sources and gain additional information regarding the potential for environmental concerns on the Property or adjacent properties:

- IDNR Contaminated Sites database
- IDNR Facility Explorer
- ♦ IDNR Underground Storage Tank database
- ♦ USEPA Envirofacts database

The Property was not listed in the USEPA Envirofacts database. Records reviews from the remaining databases are incorporated in Tables 4-1 and 4-2.

4.3 Additional Environmental Record Sources

Per Section 8.2.3 of ASTM E1527-21, one or more additional state and/or local environmental records sources may be reviewed to enhance and supplement the ASTM-required federal and state records reviewed and discussed in Section 4.2 of this *Report*. These sources include local records such as lists of waste disposal sites; Brownfields sites; lists of hazardous waste/contaminated sites; lists of registered USTs; local land records (for AULs); records of emergency release reports; and records of contaminated public wells. Local sources that may be contacted to obtain this information include the Department of Health; Fire Department; Planning Department; Building Permit/Inspection Department; Local/Regional Pollution Control Agency; Local/Regional Water Quality Agency; and local electric utility companies (for records relating to PCBs). Review of additional records is done at the discretion of the EP performing the Phase I ESA.

To obtain further information to assist in the Phase I ESA process, Foth contacted several additional environmental sources during its investigation and requested environmental information relative to the Property and vicinity. These inquiries have been made in the form of telephone interviews, email inquiries, online records review, Freedom of Information Act (FOIA) requests, and/or in-person discussions. The results of these inquiries are summarized in the following table.

Table 4-2
Additional Environmental Record Sources

Local Record Source	Type of Records	Comments
IDNR Contaminated Sites database	Online database for contaminated sites within the state of lowa	No contaminated sites were found within the search area (0.50 miles beyond the Property boundaries).
Renae Girdler, IDNR Records	Information regarding additional sites of environmental concern in the vicinity of the Property	The IDNR Records staff was contacted for any further information on the sites listed in Table 4-1; corresponding interview documentation is provided in Appendix E.

Table 4-2 (continued)

Local Record Source	Type of Records	Comments
Rick Simons, Sioux City Wastewater Treatment Plant	Information regarding current and past use of the Property	Mr. Simons was contacted to determine whether there is any record of biosolid land application on the Property. Based on information received, biosolids have not been applied in the last 2 years, and the Property was not included in the 5-year biosolids plan. Interview documentation is provided in Appendix E.
United States Army Corps of Engineers (USACE) FUDS Portal	Information regarding historical military use of the Property	Information received was used to supplement information in Table 4-1, for which documentation is provided in Appendix C.
Woodbury County Assessor	Online information regarding property ownership and buildings. https://beacon.schneidercorp.com/	The Property is comprised of Parcel ID 884826200003. As of the date of this <i>Report</i> , the Property is classified as general industrial land. A description of land ownership is provided in Section 3.1. A review of tax statements found that there are no overdue taxes on the Property.

4.4 Physical Setting Sources

The following table summarizes topographic, soil, and groundwater information for the Property:

Table 4-3
Physical Setting Sources

Topographic Information		
Property Elevation	Approximately 1,088 feet above mean sea level.	
Property Gradient	The topography of the Property is generally flat. The nearest surface water is the Missouri River, located approximately 2,015 feet to the west-northwest. The area north of the Property is agricultural, while the area south of the Property consists of the Sioux Gateway Airport. Stormwater that leaves the Property flows into the drainage ditch along the south side of the Property, then northwest along the ditch, toward the Missouri River.	

Soils Information		
Soil Types	The Property is located over soils identified as follows:	
	Soil Component Name: Percival silty clay Soil Surface Texture: silty clay Soil Drainage Class: Somewhat poorly drained Hydrologic Group: Class D - Soils in this group have high runoff potential when thoroughly wet. Water movement through the soil is restricted or very restricted. Corrosion Potential - Uncoated Steel: High corrosion potential of steel Hydric Status: This soil does not meet hydric criteria.	
	Soil Component Name: Morconick fine sandy loam Soil Surface Texture: fine sandy loam Soil Drainage Class: Well-drained Hydrologic Group: B - Soils in this group have moderately low runoff potential when thoroughly wet. Water transmission through the soil is unimpeded. Corrosion Potential – Uncoated Steel: Low corrosion potential of steel Hydric Status: This soil does not meet hydric criteria.	
Depth to Bedrock	The depth to bedrock was not reported for the Property. The well records in the ERIS report indicate bedrock was encountered at nearby wells around 105 feet below ground surface (bgs).	
References	ERIS Physical Setting Report is in Appendix A. Natural Resources Conservation Service (NRCS) Web Soil Survey was also used (NRCS, 2023).	
Hydrologic Information		
Depth to Groundwater and Groundwater Flow Direction	Depth to water table is unknown. Direction of flow from the Property is expected to be toward the west-northwest, toward the drainage ditch that leads to the Missouri River.	
Significant Water Bearing Aquifers	Aquifer information was not specified in the ERIS report.	
References	ERIS Physical Setting Report is provided in Appendix A.	

4.5 Historical Use Information on the Property and Surrounding Areas

Information pertaining to past historical uses of the Property was obtained from various publicly available and readily reviewable sources, including interviews with the Property representatives, previous ESA reports, aerial photographs, city directory searches, Sanborn fire insurance map searches, and local building records as listed below:

- Historical aerial photographs covering the years 1938 through 2023.
- Seven 7.5-inch Quadrangle USGS topographic maps covering the years 1963 through 2018.
- City directories dated 1925 through 2022.
- Information from the Property owner.

ERIS indicated that fire insurance maps covering this Property were not found. Copies of available information are provided in Appendix A.

The historical records search results for the Property and surrounding area are provided in Table 4-4.

Table 4-4
Historical Use of the Property and Surrounding Areas

Property	Historical Land Uses
Target Property	The oldest record available was the historical aerial photograph from 1938. This
	and other aerials indicate the Property has been vegetated land or used for agricultural purposes since 1938.
Property to the	The property has been used for agricultural purposes since the 1930s. Around the
North and East	1950s, a farmstead was built in the eastern portion of the property. The
	farmstead expanded west around 2004 and has not changed since then.
Property to the	In 1938, the property consisted of agricultural use and vegetated land. Starting in
South and West	1949, the development of the Sioux Gateway Airport is evident, with
	Runway 13-31 visible in aerial images starting in 1953. According to the 2021
	Management Action Plan, the airport runway was constructed in the northeastern
	portion of the property around the 1940s. Until around the 1960s or 1970s, the
	southern portion of the property was covered by the Missouri River. Some airport
	development has occurred incrementally in the northern half of the property, but
	the southern half remains vegetated land.
Property to the	The property has been used for agricultural purposes or vegetated land since the
Southeast	1930s. The property was purchased as part of the Sioux Gateway Airport in 2004.

Since there is no evidence of pesticide storage or mixing on the portion of land under consideration, the use of such materials is not considered to be a REC. Based on the information reviewed, there do not appear to be environmental issues associated with the historical use of the surrounding properties that are expected to adversely impact the target Property.

4.6 Previous Environmental Reports

Foth has been provided with no previous environmental reports for the Property and is not aware of any previous environmental reports in existence.

5. Site Reconnaissance

5.1 Methodology and Limiting Conditions

On May 8, 2024, Foth representative Morgan Langer, accompanied by Rich Johnson, a consultant who has worked at the Sioux Gateway Airport for 18 years, conducted a site reconnaissance of accessible areas of the Property. All portions of the property were accessed during the site visit. Photographic documentation of the Property and surrounding properties from the visit is included in Appendix D. Figure 3 depicts the location and direction the photos were captured.

Foth's intent was to achieve the objectives and performance factors of 40 CFR §312.20(e) and (f), through:

- ◆ A visual on-site inspection of the Property and facilities and improvements on the Property, including a visual inspection of the areas where hazardous substances may be or may have been used, stored, treated, handled, or disposed. Physical limitations to the visual inspection, if any, are noted.
- A visual inspection of adjoining properties from the Property line, public rights-of-way, or other vantage point (e.g., aerial photography), including a visual inspection of areas where hazardous substances may be or may have been stored, treated, handled, or disposed. Physical limitations, if any, to the inspection of adjacent properties are noted.

5.2 General Site Setting

The current Property use is described in Section 2.3. The Property is located north-adjacent to the airport and west of 5011 S. Patton Street in Sioux City, lowa. The Property is currently agricultural land. The Property has been vegetated land or used for agricultural purposes since at least 1938. The site surface is relatively flat. Stormwater that leaves the Property flows into the drainage ditch along the south side of the Property, then northwest along the ditch, toward the Missouri River.

5.3 Exterior Observations

Drains and Sumps

At the time of the site visit, no drains or sumps were observed on the Property.

Containers - Hazardous and Unknown Substances, Petroleum Products

At the time of the site visit, no containers were observed on the Property.

Heating/Cooling, Process and Odor Emissions

As discussed in Section 2.4.1, there are no fuels or heating and cooling systems that exist on the Property. There is no evidence of air emissions from the Property having impacted the Property or adjacent properties.

PCBs

The USEPA banned the manufacturing, processing, and distribution in commerce and use of PCB-containing equipment on May 31, 1979. In most industrial applications the pre-existing use of PCB-containing equipment was not terminated by this regulation. Foth conducted a visual survey of the exterior of the Property for evidence of PCB-containing equipment.

The Property is agricultural land that does not have pole-mounted or pad-mounted transformers. No other transformers or oil-filled equipment were observed on the Property.

Pits, Ponds, Pools of Liquid or Lagoons

At the time of the site visit, Foth did not observe any pits, ponds, or lagoons on the Property.

Solid Waste - Hazardous

At the time of the site visit, Foth did not observe any containers, lagoons, or piles of hazardous waste on the Property.

Solid Waste - Non-Hazardous

At the time of the site visit, there were no containers of non-hazardous waste observed on the Property.

Storage Tanks - Aboveground

No aboveground storage tanks (ASTs) were observed on the Property.

There was no evidence of former ASTs observed on the Property. Based on interview responses, there have been no ASTs at the Property. Reviews of other sources of information discussed elsewhere in this *Report* have not revealed the existence of ASTs.

Storage Tanks - Underground

No UST locations were observed on the Property.

There was no evidence of former USTs observed on the Property. Physical indications of USTs include warning signs, fill pipes, vent pipes, fueling locations, man-hole covers in ground surfaces, etc.

Stressed Vegetation and Stained Soil or Pavement

At the time of the site visit, there was no evidence of stained soil or environmentally stressed vegetation on the Property.

Wastewater - Storm and Surface Water and Septic Systems

There were no indications of wastewater or stormwater retention areas or septic systems on the Property. Based on interview responses, there have been none of these types of structures on the Property. Reviews of other sources of information discussed elsewhere in this *Report* have not revealed the existence of these types of structures.

Water Supply/Wells

There were no indications of water supply wells observed on the Property. Based on interview responses, there have been no water supply wells on the Property. Reviews of other sources of information discussed elsewhere in this *Report* have not revealed the existence of water supply wells at the Property.

5.4 Interior Observations

No structures are present on the Property.

6. Interviews

As part of this Phase I ESA, Foth attempted to interview individuals knowledgeable about present and past operations at the Property to obtain information that would point to RECs at the Property.

6.1 Interview with Current Owner and Site Representative

On behalf of Foth, RS&H interviewed Jon Oehlerking, a relative of the current owner and the site representative. Jon provided information regarding the history of the Property. This information has been incorporated throughout the *Report*. Information from this interview does not indicate the presence of RECs at the Property. Interview documentation can be found in Appendix E.

6.2 Interviews with Past Owners, Occupants, or Operators

During the Phase I ESA activities, Foth was not able to conduct interviews with past owners, occupants, or operators of the Property. Past owners were unable to be located for interviews.

6.3 Interviews with Others with Historical Knowledge of the Property

Foth did not identify other individuals with historical knowledge of the Property. The interviews discussed in Section 6.1 included site representatives with historical knowledge of the Property.

6.4 Interviews with Local Government Agencies

Interviews with local government agencies were conducted in conjunction with the review of additional regulatory records. Information obtained through these interviews is primarily discussed in Section 4.3, as well as other pertinent areas of this *Report*.

7. Evaluation

7.1 Findings

The findings presented here are based upon Foth's visual site inspection, interviews, and historical and environmental record reviews of the Property and adjacent properties. Per ASTM E1527-21, findings include RECs, CRECs, HRECs, and *de minimis* conditions. RECs are classified as either the presence of release, the likely presence of a release, or presence of a material threat of future release. CRECs are conditions where past contamination has been allowed to remain in place and are subject to implementation of required controls, such as property use restrictions, AULs, institutional controls, or engineering controls. HRECs are generally conditions that in the past have been remediated to the satisfaction of the responsible regulatory agency, without subjecting the property to additional controls. *De minimis* conditions are those situations that do not indicate a current material risk of harm to public health but could potentially result in exposure or release.

The order of presentation of findings is not specific to the potential liability associated with each finding. This Phase I ESA did not include sampling or analysis of any media.

Recognized Environmental Conditions

There are no RECs associated with the Property.

Controlled Recognized Environmental Conditions

There are no CRECs associated with the Property.

Historical Recognized Environmental Conditions

There are no HRECs associated with the Property.

De minimis Conditions

There are no de minimis conditions associated with the Property.

7.2 Opinion

This Report includes Foth's professional opinions of the impact on the Property of conditions identified in previous sections of this *Report*.

A Phase I ESA is conducted to permit formulation of an opinion as to the potential for RECs to exist at a Property. Opinions relative to the potential presence of hazardous materials, substances, wastes, or other environmental conditions given in this *Report* are based upon information derived from the most recent site reconnaissance and from other activities described herein. The Users of this *Report* are herewith advised that the conditions observed by Foth are subject to change, and the research effort conducted for a Phase I ESA is limited. Certain indicators of the presence of hazardous environmental conditions may have been latent at the time of the most recent site reconnaissance and may subsequently become observable.

The information collected during this investigation has been evaluated with the need in mind to identify RECs at the Property. RECs are defined by ASTM as the presence or likely presence of any hazardous substances or petroleum products on a property (1) due to release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment. The term is not intended to include *de minimis* conditions that generally do not present a threat to human health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies. Conditions determined to be *de minimis* are not RECs.

Conditions identified by Foth as RECs are listed in Section 8.

7.3 Deviations, Data Gaps, and Data Failures

ASTM E1527-21 requires that all deletions, deviations, or additions from or to the practice (if any) shall be listed individually and in detail, including client-imposed constraints.

There are no deviations from the required practice as described in ASTM E1527-21.

7.3.1 Data Gaps

Data gaps (as defined in 40 CFR §312.10) in the information developed as part of the inquiries made during this ESA that affect the ability of persons conducting the appropriate inquiries to identify conditions indicative of releases or threatened releases in each area of inquiry under each standard and practice are identified as follows:

There are no data gaps as described in ASTM E1527-21 or 40 CFR 312.20 (g).

7.3.2 Data Failures

Data failures (as defined in ASTM E1527-21 § 3.2.21) in the information developed as part of the inquiries made during this ESA that affect the ability of persons conducting the appropriate inquiries must be commented on in the *Report*.

There are no data failures as described in ASTM E1527-21 or 40 CFR 312.20 (g).

7.4 Limiting Conditions/Deviations

No limiting conditions or deviations from ASTM E1527-21 occurred for this Report.

7.5 Additional Services

No additional services were performed as part of this Phase I ESA.

8. Conclusions

Foth performed a Phase I ESA of the Property located north-adjacent to the Sioux Gateway Airport and west of 5011 S. Patton Street, Sioux City, Woodbury County, Iowa. This Phase I ESA was performed in conformance with the scope and limitations of ASTM E1527-21. Any exceptions to or deletions from this practice are described in Section 4.3 of this *Report*.

This assessment has revealed no RECs, CRECs, or significant data gaps in connection with the subject Property.

_	_	•		_	•
u	Recommen	datione a	nd Non-	SCANA	SARVICAC
7.	VECOIIIIIEII	uativiis a	IIU ITUII-	JUUDE	JEI VICE 3

Based on the information assessed during this Phase I ESA, Foth has no recommendations for further investigations at this time.								

10. References

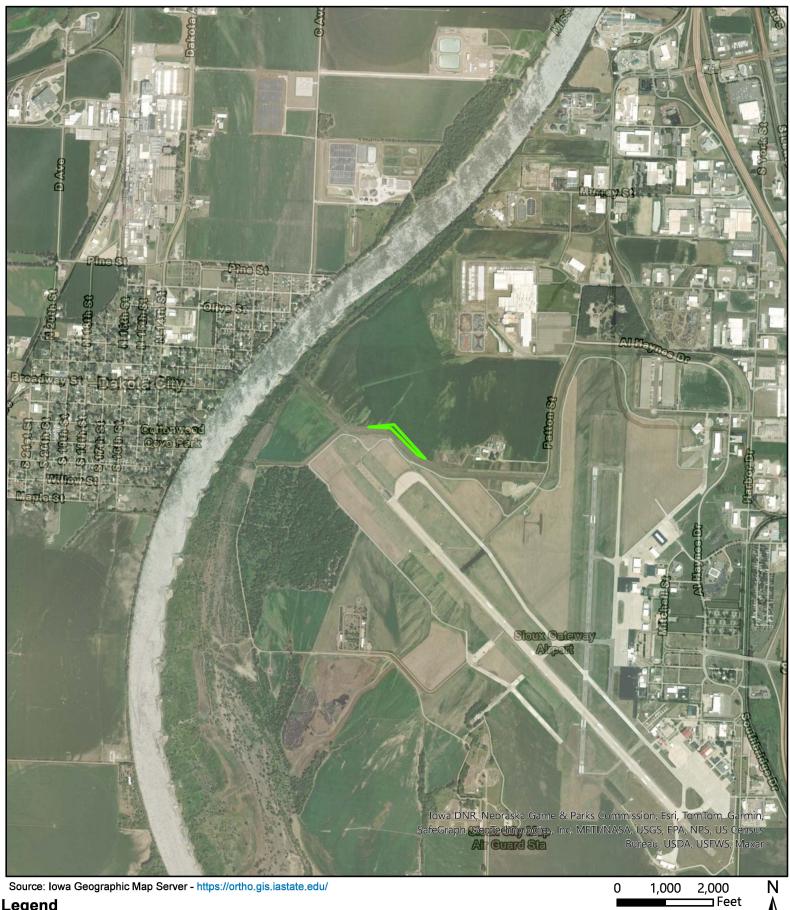
ASTM International (ASTM), 2021. Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process (E1527-21). 21 December 2021.

Environmental Risk Information Services (ERIS), 2024. Site Evaluation: 23S049.00 Sioux Gateway Airport NEPA. Order Number: 24041700273. 19 April 2024.

Iowa Department of Natural Resources (IDNR). *Contaminated Sites*. https://programs.iowadnr.gov/contaminatedsites/.

IDNR. Facility Explorer. https://facilityexplorer.iowadnr.gov/FacilityExplorer/Default.aspx.

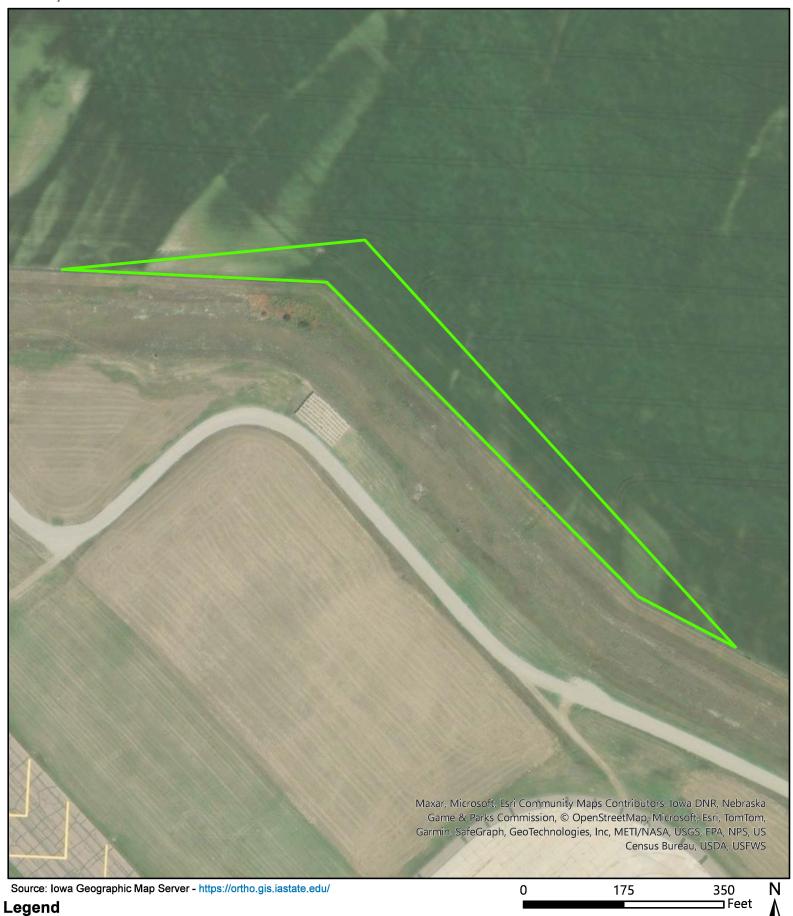
IDNR. Underground Storage Tanks. Tanks (iowadnr.gov).


Natural Resources Conservation Service (NRCS), 2023. *Web Soil Survey*. Retrieved from https://websoilsurvey.nrcs.usda.gov/app/ (accessed 20 May 2024).

United States Environmental Protection Agency. Envirofacts. https://enviro.epa.gov/.

Woodbury County Assessor. https://beacon.schneidercorp.com/.

Figures


Figure 1 Site Location

Legend

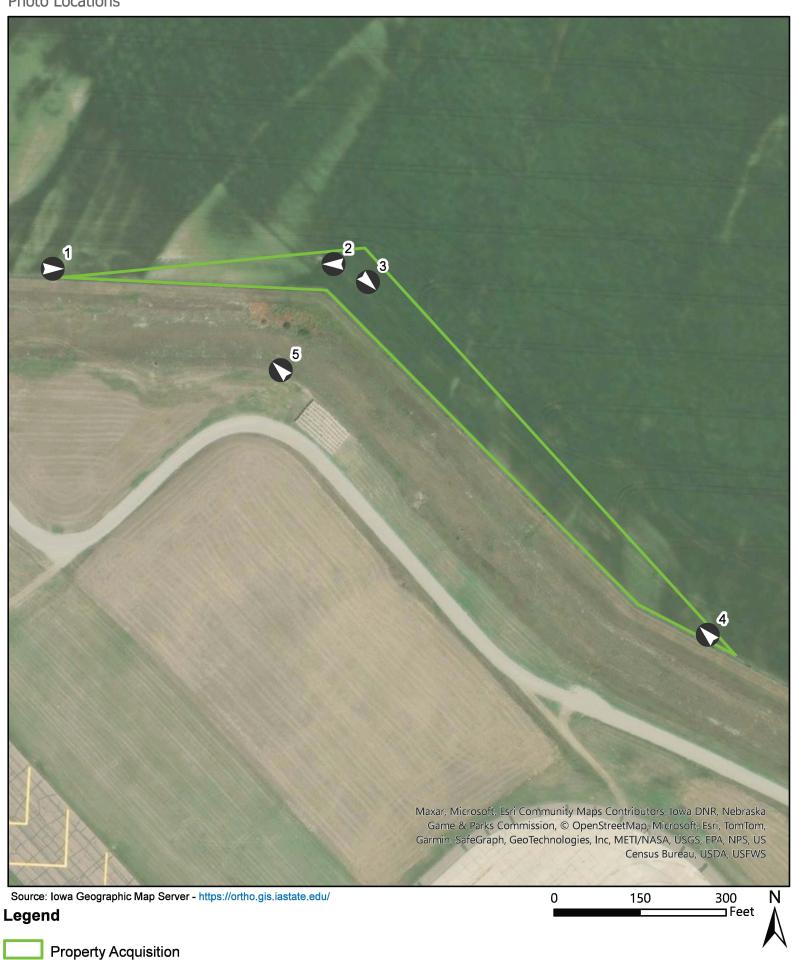

Property Acquisition

Figure 2 Site Layout

Property Acquisition

Figure 3 Photo Locations

Approx. Photo Location & Direction

Appendix A

Environmental Risk Information Services (ERIS) Reports

Sioux Gateway Airport NEPA **Project Property:**

n/a

Sioux City IA

23S049.00 Phase 130 Task 307 **Project No:**

Report Type: Database Report **Order No:** 24041700273

Requested by: Foth Infrastructure & Environment LLC

Date Completed: April 19, 2024

Table of Contents

Table of Contents	2
Executive Summary	
Executive Summary: Report Summary	4
Executive Summary: Site Report Summary - Project Property	
Executive Summary: Site Report Summary - Surrounding Properties	9
Executive Summary: Summary by Data Source	10
Map	11
Aerial	14
Topographic Map	15
Detail Report	
Unplottable Summary	17
Unplottable Report	
Appendix: Database Descriptions	19
Definitions	

Notice: IMPORTANT LIMITATIONS and YOUR LIABILITY

Reliance on information in Report: This report DOES NOT replace a full Phase I Environmental Site Assessment but is solely intended to be used as database review of environmental records.

License for use of information in Report: No page of this report can be used without this cover page, this notice and the project property identifier. The information in Report(s) may not be modified or re-sold.

Your Liability for misuse: Using this Service and/or its reports in a manner contrary to this Notice or your agreement will be in breach of copyright and contract and ERIS may obtain damages for such mis-use, including damages caused to third parties, and gives ERIS the right to terminate your account, rescind your license to any previous reports and to bar you from future use of the Service.

No warranty of Accuracy or Liability for ERIS: The information contained in this report has been produced by ERIS Information Inc. ("ERIS") using various sources of information, including information provided by Federal and State government departments. The report applies only to the address and up to the date specified on the cover of this report, and any alterations or deviation from this description will require a new report. This report and the data contained herein does not purport to be and does not constitute a guarantee of the accuracy of the information contained herein and does not constitute a legal opinion nor medical advice. Although ERIS has endeavored to present you with information that is accurate, ERIS disclaims, any and all liability for any errors, omissions, or inaccuracies in such information and data, whether attributable to inadvertence, negligence or otherwise, and for any consequences arising therefrom. Liability on the part of ERIS is limited to the monetary value paid for this report.

Trademark and Copyright: You may not use the ERIS trademarks or attribute any work to ERIS other than as outlined above. This Service and Report (s) are protected by copyright owned by ERIS Information Inc. Copyright in data used in the Service or Report(s) (the "Data") is owned by ERIS or its licensors. The Service, Report(s) and Data may not be copied or reproduced in whole or in any substantial part without prior written consent of ERIS.

Executive Summary

Property	/ Informa	tıon:
LIOPCIL	minonina	

Project Property: Sioux Gateway Airport NEPA

n/a Sioux City IA

Project No: 23S049.00 Phase 130 Task 307

Coordinates:

 Latitude:
 42.4127437

 Longitude:
 -96.39699546

 UTM Northing:
 4,698,886.99

 UTM Easting:
 714,182.71

 UTM Zone:
 UTM Zone 14T

Elevation: 1,088 FT

Order Information:

 Order No:
 24041700273

 Date Requested:
 April 17, 2024

Requested by: Foth Infrastructure & Environment LLC

Report Type: Database Report

Historicals/Products:

Aerial Photographs Historical Aerials (with Project Boundaries)

Chain of Title & Lien Searches ASTM E1527-21 Compliant Environmental Lien Search (back to 1980)

Order No: 24041700273

City Directory Search CD - 2 Street Search

ERIS Xplorer
Excel Add-On
Excel Add-On

Fire Insurance Maps

US Fire Insurance Maps

Physical Setting Report (PSR)

Physical Setting Report (PSR)

Product Summary Product Summary for Aerials, FIMs & Topos

Topographic Maps

Topographic Maps

Executive Summary: Report Summary

Database	Searched	Search Radius	Project Property	Within 0.12mi	0.125mi to 0.25mi	0.25mi to 0.50mi	0.50mi to 1.00mi	Total
Standard Environmental Records		,,,,,,,,,	,	V			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Federal								
NPL	Y	1	0	0	0	0	0	0
PROPOSED NPL	Υ	1	0	0	0	0	0	0
DELETED NPL	Υ	0.5	0	0	0	0	-	0
SEMS	Υ	0.5	0	0	0	0	-	0
ODI	Υ	0.5	0	0	0	0	-	0
SEMS ARCHIVE	Υ	0.5	0	0	0	0	-	0
CERCLIS	Υ	0.5	0	0	0	0	-	0
IODI	Υ	0.5	0	0	0	0	-	0
CERCLIS NFRAP	Υ	0.5	0	0	0	0		0
CERCLIS LIENS	Υ	PO	0	Ħ	÷	-	-	0
RCRA CORRACTS	Υ	1	0	0	0	0	0	0
RCRA TSD	Υ	0.5	0	0	0	0	-	0
RCRA LQG	Υ	0.25	0	0	0	-	-	0
RCRA SQG	Υ	0.25	0	0	0	-	-	0
RCRA VSQG	Υ	0.25	0	0	0	-	-3	0
RCRA NON GEN	Υ	0.25	0	0	0	="	-	0
RCRA CONTROLS	Υ	0.5	0	0	0	0	-	0
FED ENG	Υ	0.5	0	0	0	0		0
FED INST	Υ	0.5	0	0	0	0	-	0
LUCIS	Υ	0.5	0	0	0	0	-	0
NPL IC	Υ	0.5	0	0	0	0		0
ERNS 1982 TO 1986	Υ	PO	0	-	-	.=?	-	0
ERNS 1987 TO 1989	Υ	PO	0	-	-	.=)	-	0
ERNS	Υ	PO	0	-%		.=:		0
FED BROWNFIELDS	Υ	0.5	0	0	0	0	-	0
FEMA UST	Υ	0.25	0	0	0	,	-	0
FRP	Υ	0.25	0	0	0	-	-	0

Dat	tabase	Searched	Search Radius	Project Property	Within 0.12mi	0.125mi to 0.25mi	0.25mi to 0.50mi	0.50mi to 1.00mi	Total
	DELISTED FRP	Y	0.25	0	0	0	-	-	0
	HIST GAS STATIONS	Y	0.25	0	0	0	:		0
	REFN	Y	0.25	0	0	0	-		0
	BULK TERMINAL	Y	0.25	0	0	0	-	-7	0
	SEMS LIEN	Y	PO	0	*	=	÷	-	0
	SUPERFUND ROD	Y	1	0	0	0	0	0	0
	DOE FUSRAP	Y	1	0	0	0	0	0	0
Sta	ate								
	SHWS	Y	1	0	0	0	0	0	0
	DEL SHWS	Y	1	0	0	0	0	0	0
	DELISTED SHWS	Y	1	0	0	0	0	0	0
	CONT	Y	0.5	0	0	0	0	-	0
	SWF/LF	Y	0.5	0	0	0	0	-1	0
	LUST	Y	0.5	0	0	0	0		0
	LAST	Y	0.5	0	0	0	0	- 1	0
	DELISTED LST	Υ	0.5	0	0	0	0	-	0
	UST	Y	0.25	0	0	0	=	-	0
	AST	Y	0.25	0	0	0			0
	SFM AST	Y	0.25	0	0	0	-	-	0
	DELISTED TANK	Y	0.25	0	0	0	-:	-:	0
	INST	Y	0.5	0	0	0	0	-	0
	VCP	Y	0.5	0	0	0	0	-	0
	BROWNFIELDS	Υ	0.5	0	0	0	0	-	0
Tri	bal								
	INDIAN LUST	Y	0.5	0	0	0	0	-	0
	INDIAN UST	Y	0.25	0	0	0	.=:		0
	DELISTED INDIAN LST	Υ	0.5	0	0	0	0	-	0
	DELISTED INDIAN UST	Y	0.25	0	0	0	=	 .	0
County		No Cou	ınty stand	ard environi	mental rec	ord sources	s available	for this State	е.
Additional Environmental Records									
rec	deral	Υ	0.5	0	0	0	0	_	0
	PFAS GHG	Υ	PO	0	-	-	-	-	0
	FINDS/FRS								U

Data	base	Searched	Search Radius	Project Property	Within 0.12mi	0.125mi to 0.25mi	0.25mi to 0.50mi	0.50mi to 1.00mi	Total
	TRIS	Υ	PO	0	-	-		-	0
	PFAS NPL	Y	0.5	0	0	0	0	-:	0
	PFAS FED SITES	Y	0.5	0	0	0	0	-,	0
	PFAS SSEHRI	Y	0.5	0	0	0	0	-	0
	ERNS PFAS	Y	0.5	0	0	0	0	æ"	0
	PFAS NPDES	Y	0.5	0	0	0	0	-	0
	PFAS TRI	Y	0.5	0	0	0	0	-	0
	PFAS WATER	Y	0.5	0	0	0	0	-,	0
	PFAS TSCA	Y	0.5	0	0	0	0	-	0
	PFAS E-MANIFEST	Y	0.5	0	0	0	0	. "	0
	PFAS IND	Y	0.5	0	0	0	0	- 9	0
	HMIRS	Y	0.125	0	0	-	-	-;	0
	NCDL	Y	0.125	0	0		-	-	0
	TSCA	Y	0.125	0	0	-	-	-	0
	HIST TSCA	Y	0.125	0	0	=:	<u>=</u> 0	-	0
	FTTS ADMIN	Y	PO	0	-	-	-		0
	FTTS INSP	Y	PO	0	-	-	-	-	0
	PRP	Y	PO	0	•	-	-:	-:	0
	SCRD DRYCLEANER	Y	0.5	0	0	0	0	-	0
	ICIS	Y	PO	0	•	•.	-	-	0
	FED DRYCLEANERS	Y	0.25	0	0	0	-	-	0
	DELISTED FED DRY	Y	0.25	0	0	0	-	-	0
	FUDS	Y	1	1	0	0	0	0	1
	FUDS MRS	Y	1	0	0	0	0	0	0
	FORMER NIKE	Y	1	0	0	0	0	0	0
	PIPELINE INCIDENT	Y	PO	0	-	÷	=	-	0
	MLTS	Y	PO	0	=	-	-	-	0
	HIST MLTS	Y	PO	0	-	-	-	-	0
	MINES	Y	0.25	0	0	0	-;		0
	SMCRA	Y	1	0	0	0	0	0	0
	MRDS	Y	1	0	0	0	0	0	0
	LM SITES	Υ	1	0	0	0	0	0	0
	ALT FUELS	Υ	0.25	0	0	0	-	-	0
	CONSENT DECREES	Υ	0.25	0	0	0	-:		0
	AFS	Y	PO	0	-	-	-	-	0

Dat	abase	Searched	Search Radius	Project Property	Within 0.12mi	0.125mi to 0.25mi	0.25mi to 0.50mi	0.50mi to 1.00mi	Total
	SSTS	Y	0.25	0	0	0	Ψ;	-	0
	PCBT	Y	0.5	0	0	0	0		0
	PCB	Y	0.5	0	0	0	0	i - 1	0
Sta	te								
	SPILLS	Y	0.125	0	0	-	-	-	0
	DRYCLEANERS	Y	0.25	0	0	0	-	,-"	0
	DELISTED DRYCLEANERS	Y	0.25	0	0	0	-	-	0
	AIR PERMITS	Y	0.25	0	0	0	-	-	0
	PFAS	Y	0.5	0	0	0	0	-	0
	LIENS	Y	PO	0	=		-	-	0
	TIER 2	Y	0.125	0	0	=7		-	0
Tril	bal	No Trib	al additio	nal environr	mental reco	ord sources	available f	or this State	9.
Co	unty	No Cou	ınty additi	onal enviroi	nmental re	cord source	es available	for this Sta	te.
	-	Total:		1	0	0	0	0	1

^{*} PO – Property Only
* 'Property and adjoining properties' database search radii are set at 0.25 miles.

Executive Summary: Site Report Summary - Project Property

Map Key	DB	Company/Site Name	Address	Direction	Distance (mi/ft)	Elev Diff (ft)	Page Number
1	FUDS ·	SIOUX CITY MUNI AIRPORT	SIOUX CITY IA	ESE	0.00 / 0.00	0	p1p-16 149 40083-x1x
			FUDS Property No: B07IA0131				

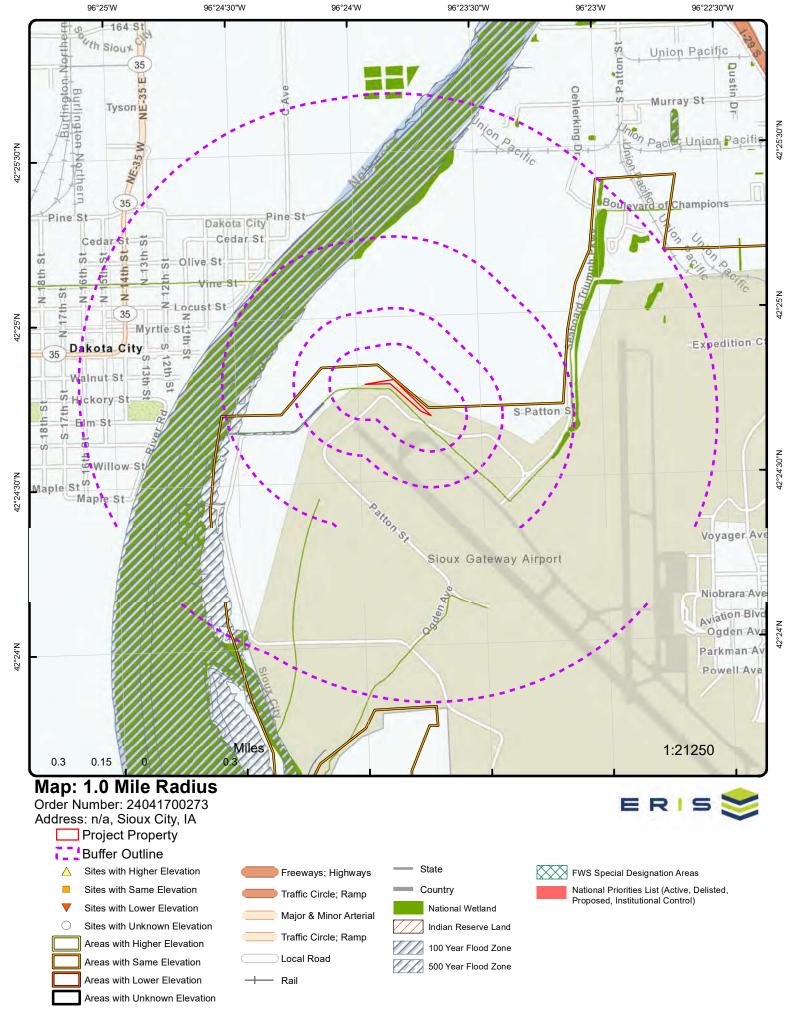
Executive Summary: Site Report Summary - Surrounding Properties

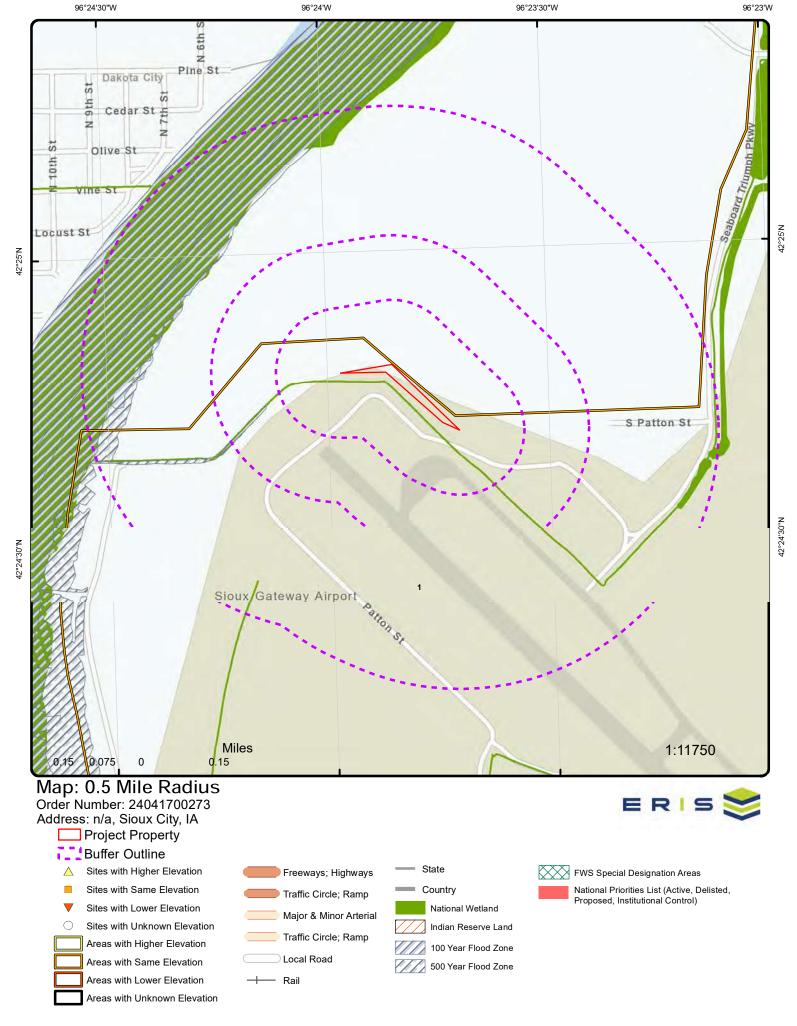
MapDBCompany/Site NameAddressDirectionDistanceElev DiffPageKey(mi/ft)(ft)Number

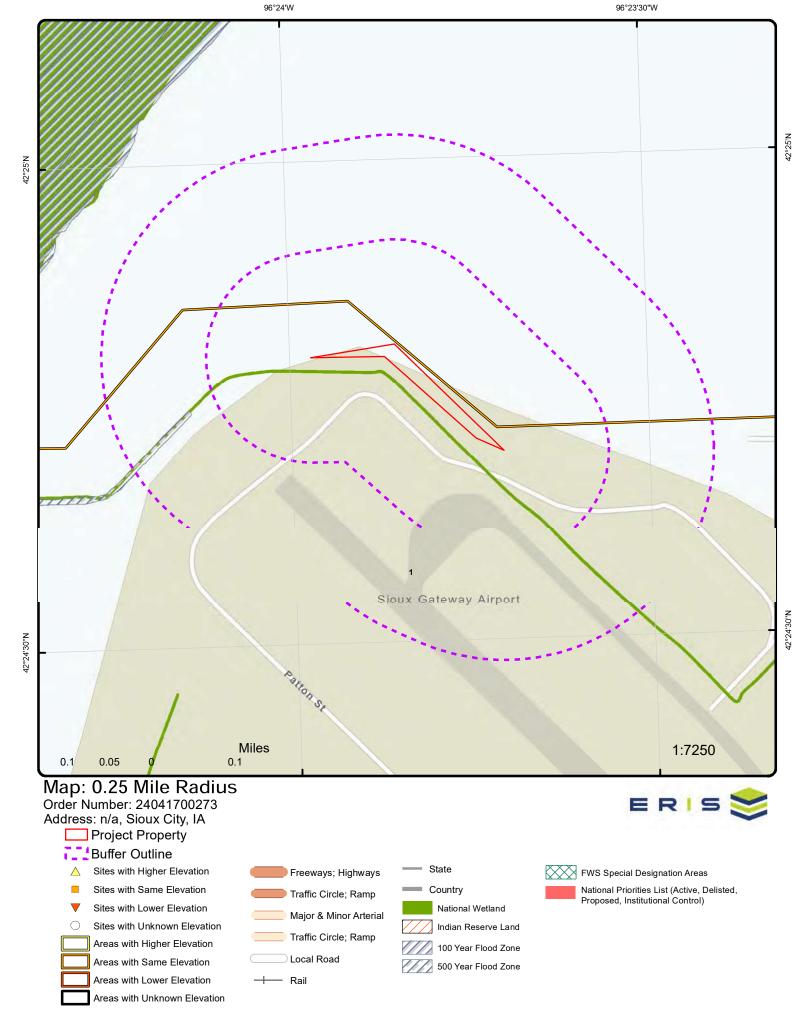
No records found in the selected databases for the surrounding properties.

Executive Summary: Summary by Data Source

Non Standard

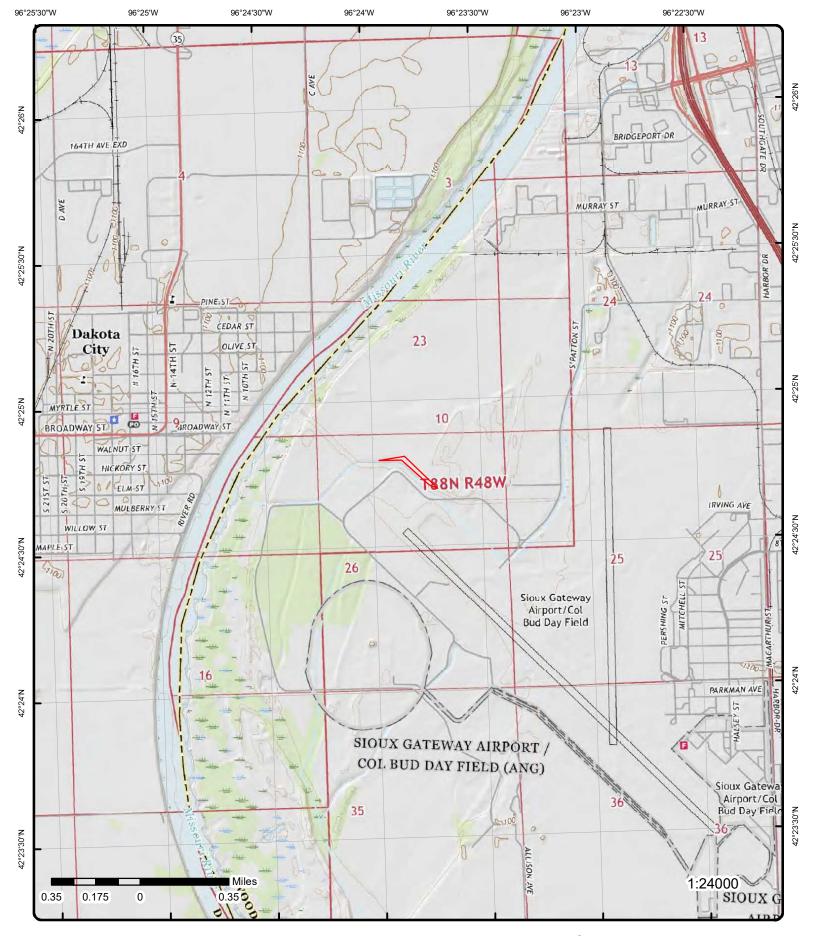

Federal


FUDS - Formerly Used Defense Sites


A search of the FUDS database, dated May 15, 2023 has found that there are 1 FUDS site(s) within approximately 1.00miles of the project property.

Equal/Higher Elevation	<u>Address</u>	<u>Direction</u>	Distance (mi/ft)	Map Key
SIOUX CITY MUNI AIRPORT	SIOUX CITY IA	ESE	0.00 / 0.00	<u>1</u>

FUDS Property No: B07IA0131


Aerial Year: 2022

Address: n/a, Sioux City, IA

Order Number: 24041700273

© ERIS Information Inc.

Topographic Map Year: 2018

Address: n/a, IA

Quadrangle(s): Sioux City South IA,NE,SD, Sergeant Bluff IA

Source: USGS Topographic Map

Order Number: 24041700273

© ERIS Information Inc.

Detail Report

Мар Кеу	Number of Records	Direction	Distance (mi/ft)	Elev/Diff (ft)	Site	DB
1	1 of 1	ESE	0.00 / 0.00	1,087.61 / 0	SIOUX CITY MUNI AIRPORT	FUDS
					SIOUX CITY IA	
FUDS Property EMS Map Link FUDS INST ID. Status: SDS ID: NPL Status Co Eligibility: Site Eligib: Current Owner Has Project: DOD FUDS Pro Project Requir No Further Ac	c: : ode: r: o: red:	B07IA0131 https://fudsporta IA79799F02180 Properties with a Not Listed Eligible Eligible Local Governme Yes	0 all projects at site	/ems/inventory/m	ap?id=53732	
Congressiona	l District:	04				
Congressiona Media ID: Metadata ID: Feature Desc:		04				
EPA Region:		07				
County: Latitude: Longitude:		WOODBURY 42.40156 -96.385151				
Fiscal year:		2020				
USACE Division USACE District Centroid Lat: Centroid Long Se Anno Cad	et: g:	nwd nwo				

DoD use began with construction of the Sioux City Army Air Base in 1942. The property was deeded to the city of Sioux City in 1948 but was recaptured by the Air Force in 1963. Air Force and Air National Guard missions continued until 1969 when the property was reported excess. Underground storage tanks and petroleum issues are the subject of the FUDS Program involvement.

U.S. Army Corps of Engineers Geospatial Open Data

Feature Description:

Shape Length: Shape Area:

Shape Len: X: Y:

Data Source:

Property History:

DoD use began with construction of the Sioux City Army Air Base in 1942. The property was deeded to the city of Sioux City in 1948 but was recaptured by the Air Force in 1963. Air Force and Air National Guard missions continued until 1969 when the property was reported excess. Underground storage tanks and petroleum issues are the subject of the FUDS Program involvement.

Order No: 24041700273

0.251406208410704

.25140621

0.00114168506371592

Unplottable Summary

Total: 0 Unplottable sites

City Company Name/Site Name DB **Address** Zip **ERIS ID**

No unplottable records were found that may be relevant for the search criteria.

Unplottable Report

No unplottable records were found that may be relevant for the search criteria.

Appendix: Database Descriptions

Environmental Risk Information Services (ERIS) can search the following databases. The extent of historical information varies with each database and current information is determined by what is publicly available to ERIS at the time of update. ERIS updates databases as set out in ASTM Standard E1527-13 and E1527-21, Section 8.1.8 Sources of Standard Source Information:

"Government information from nongovernmental sources may be considered current if the source updates the information at least every 90 days, or, for information that is updated less frequently than quarterly by the government agency, within 90 days of the date the government agency makes the information available to the public."

Standard Environmental Record Sources

Federal

NPL NPL

Sites on the United States Environmental Protection Agency (EPA)'s National Priorities List of the most serious uncontrolled or abandoned hazardous waste sites identified for possible long-term remedial action under the Superfund program. The NPL, which EPA is required to update at least once a year, is based primarily on the score a site receives from EPA's Hazard Ranking System. A site must be on the NPL to receive money from the Superfund Trust Fund for remedial action. Sites are represented by boundaries where available in the EPA Superfund Site Boundaries maintained by the Shared Enterprise Geodata and Services (SEGS). Site boundaries represent the footprint of a whole site, the sum of all of the Operable Units and the current understanding of the full extent of contamination; for Federal Facility sites, the total site polygon may be the Facility boundary. Where there is no polygon boundary data available for a given site, the site is represented as a point.

Government Publication Date: Oct 26, 2023

National Priority List - Proposed:

PROPOSED NPL

Sites proposed by the United States Environmental Protection Agency (EPA), the state agency, or concerned citizens for addition to the National Priorities List (NPL) due to contamination by hazardous waste and identified by the EPA as a candidate for cleanup because it poses a risk to human health and/or the environment. Sites are represented by boundaries where available in the EPA Superfund Site Boundaries maintained by the Shared Enterprise Geodata and Services (SEGS). Site boundaries represent the footprint of a whole site, the sum of all of the Operable Units and the current understanding of the full extent of contamination; for Federal Facility sites, the total site polygon may be the Facility boundary. Where there is no polygon boundary data available for a given site, the site is represented as a point.

Government Publication Date: Oct 26, 2023

Deleted NPL:

Sites deleted from the United States Environmental Protection Agency (EPA)'s National Priorities List. The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate. Sites are represented by boundaries where available in the EPA Superfund Site Boundaries maintained by the Shared Enterprise Geodata and Services (SEGS). Site boundaries represent the footprint of a whole site, the sum of all of the Operable Units and the current understanding of the full extent of contamination; for Federal Facility sites, the total site polygon may be the Facility boundary. Where there is no polygon boundary data available for a given site, the site is represented as a point.

Government Publication Date: Oct 26, 2023

SEMS List 8R Active Site Inventory:

SEMS

Order No: 24041700273

The U.S. Environmental Protection Agency's (EPA) Superfund Program has deployed the Superfund Enterprise Management System (SEMS), which integrates multiple legacy systems into a comprehensive tracking and reporting tool. This inventory contains active sites evaluated by the Superfund program that are either proposed to be or are on the National Priorities List (NPL) as well as sites that are in the screening and assessment phase for possible inclusion on the NPL. The Active Site Inventory Report displays site and location information at active SEMS sites. An active site is one at which site assessment, removal, remedial, enforcement, cost recovery, or oversight activities are being planned or conducted. This data includes SEMS sites from the List 8R Active file as well as applicable sites from the SEMS GIS/REST file layer obtained from EPA's Facility Registry Service.

Government Publication Date: Jan 26, 2024

Inventory of Open Dumps, June 1985:

ODI

The Resource Conservation and Recovery Act (RCRA) provides for publication of an inventory of open dumps. The Act defines "open dumps" as facilities which do not comply with EPA's "Criteria for Classification of Solid Waste Disposal Facilities and Practices" (40 CFR 257).

Government Publication Date: Jun 1985

SEMS List 8R Archive Sites: SEMS ARCHIVE

The U.S. Environmental Protection Agency's (EPA) Superfund Enterprise Management System (SEMS) Archived Site Inventory displays site and location information at sites archived from SEMS. An archived site is one at which EPA has determined that assessment has been completed and no further remedial action is planned under the Superfund program at this time. This data includes sites from the List 8R Archived site file.

Government Publication Date: Jan 26, 2024

<u>Comprehensive Environmental Response, Compensation and Liability Information System - CERCLIS:</u>

CERCLIS

Superfund is a program administered by the United States Environmental Protection Agency (EPA) to locate, investigate, and clean up the worst hazardous waste sites throughout the United States. CERCLIS is a database of potential and confirmed hazardous waste sites at which the EPA Superfund program has some involvement. It contains sites that are either proposed to be or are on the National Priorities List (NPL) as well as sites that are in the screening and assessment phase for possible inclusion on the NPL. The EPA administers the Superfund program in cooperation with individual states and tribal governments; this database is made available by the EPA.

Government Publication Date: Oct 25, 2013

EPA Report on the Status of Open Dumps on Indian Lands:

IODI

Public Law 103-399, The Indian Lands Open Dump Cleanup Act of 1994, enacted October 22, 1994, identified congressional concerns that solid waste open dump sites located on American Indian or Alaska Native (Al/AN) lands threaten the health and safety of residents of those lands and contiguous areas. The purpose of the Act is to identify the location of open dumps on Indian lands, assess the relative health and environment hazards posed by those sites, and provide financial and technical assistance to Indian tribal governments to close such dumps in compliance with Federal standards and regulations or standards promulgated by Indian Tribal governments or Alaska Native entities.

Government Publication Date: Dec 31, 1998

CERCLIS - No Further Remedial Action Planned:

CERCLIS NFRAP

An archived site is one at which EPA has determined that assessment has been completed and no further remedial action is planned under the Superfund program at this time. The Archive designation means that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list this site on the National Priorities List (NPL). This decision does not necessarily mean that there is no hazard associated with a given site; it only means that, based upon available information, the location is not judged to be a potential NPL site

Government Publication Date: Oct 25, 2013

CERCLIS LIENS CERCLIS LIENS

A Federal Superfund lien exists at any property where EPA has incurred Superfund costs to address contamination ("Superfund site") and has provided notice of liability to the property owner. A Federal CERCLA ("Superfund") lien can exist by operation of law at any site or property at which EPA has spent Superfund monies. This database is made available by the United States Environmental Protection Agency (EPA). This database was provided by the United States Environmental Protection Agency (EPA). Refer to SEMS LIEN as the current data source for Superfund Liens.

Government Publication Date: Jan 30, 2014

RCRA CORRACTS-Corrective Action:

RCRA CORRACTS

RCRA Info is the U.S. Environmental Protection Agency's (EPA) comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. At these sites, the Corrective Action Program ensures that cleanups occur. EPA and state regulators work with facilities and communities to design remedies based on the contamination, geology, and anticipated use unique to each site.

Government Publication Date: Jan 1, 2024

RCRA non-CORRACTS TSD Facilities:

RCRA TSD

Order No: 24041700273

RCRA Info is the U.S. Environmental Protection Agency's (EPA) comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. This database includes Non-Corrective Action sites that have indicated engagement in the treatment, storage, or disposal of hazardous waste which requires a RCRA hazardous waste permit.

Government Publication Date: Jan 1, 2024

RCRA LQG RCRA LQG

RCRA Info is the U.S. Environmental Protection Agency's (EPA) comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. RCRA Info replaces the data recording and reporting abilities of the Resource Conservation and Recovery Information System (RCRIS) and the Biennial Reporting System (BRS). A hazardous waste generator is any person or site whose processes and actions create hazardous waste (see 40 CFR 260.10). Large Quantity Generators (LQGs) generate 1,000 kilograms per month or more of hazardous waste or more than one kilogram per month of acutely hazardous waste. *Government Publication Date: Jan 1, 2024*

RCRA Small Quantity Generators List:

RCRA SQG

RCRA Info is the U.S. Environmental Protection Agency's (EPA) comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. RCRA Info replaces the data recording and reporting abilities of the Resource Conservation and Recovery Information System (RCRIS) and the Biennial Reporting System (BRS). A hazardous waste generator is any person or site whose processes and actions create hazardous waste (see 40 CFR 260.10). Small Quantity Generators (SQGs) generate more than 100 kilograms, but less than 1,000 kilograms, of hazardous waste per month.

Government Publication Date: Jan 1, 2024

RCRA Very Small Quantity Generators List:

RCRA VSQG

RCRA Info is the U.S. Environmental Protection Agency's (EPA) comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. A hazardous waste generator is any person or site whose processes and actions create hazardous waste (see 40 CFR 260.10). Very Small Quantity Generators (VSQG) generate 100 kilograms or less per month of hazardous waste, or one kilogram or less per month of acutely hazardous waste. Additionally, VSQG may not accumulate more than 1,000 kilograms of hazardous waste at any time.

Government Publication Date: Jan 1, 2024

RCRA Non-Generators:

RCRA Info is the U.S. Environmental Protection Agency's (EPA) comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. RCRA Info replaces the data recording and reporting abilities of the Resource Conservation and Recovery Information System (RCRIS) and the Biennial Reporting System (BRS). A hazardous waste generator is any person or site whose processes and actions create hazardous waste (see 40 CFR 260.10). Non-Generators do not presently generate hazardous waste.

Government Publication Date: Jan 1, 2024

RCRA Sites with Controls:

List of Resource Conservation and Recovery Act (RCRA) facilities with institutional controls in place. RCRA gives the U.S. Environmental Protection Agency (EPA) the authority to control hazardous waste from the "cradle-to-grave." This includes the generation, transportation, treatment, storage, and disposal of hazardous waste. RCRA also set forth a framework for the management of non-hazardous solid wastes. The 1986 amendments to RCRA enabled EPA to address environmental problems that could result from underground tanks storing petroleum and other hazardous substances.

Government Publication Date: Jan 1, 2024

Federal Engineering Controls-ECs:

FED ENG

List of Engineering controls (ECs) made availabe by the United States Environmental Protection Agency (EPA). ECs encompass a variety of engineered and constructed physical barriers (e.g., soil capping, sub-surface venting systems, mitigation barriers, fences) to contain and/or prevent exposure to contamination on a property. The EC listing includes remedy component data from Superfund decision documents for applicable sites on the final or deleted on the National Priorities List (NPL); and sites with a Superfund Alternative Approach (SAA) Agreement in place. The only sites included that are not on the NPL; proposed for NPL; or removed from proposed NPL, are those with an SAA Agreement in place.

Government Publication Date: Feb 29, 2024

Federal Institutional Controls- ICs:

FED INST

Order No: 24041700273

List of Institutional controls (ICs) made available by the United States Environmental Protection Agency (EPA). ICs are non-engineered instruments, such as administrative and legal controls, that help minimize the potential for human exposure to contamination and/or protect the integrity of the remedy. Although it is EPA's expectation that treatment or engineering controls will be used to address principal threat wastes and that groundwater will be returned to its beneficial use whenever practicable, ICs play an important role in site remedies because they reduce exposure to contamination by limiting land or resource use and guide human behavior at a site. The IC listing includes remedy component data from Superfund decision documents for applicable sites on the final or deleted on the National Priorities List (NPL); and sites with a Superfund Alternative Approach (SAA) Agreement in place. The only sites included that are not on the NPL; proposed for NPL; or removed from proposed NPL, are those with an SAA Agreement in place. Government Publication Date: Feb 29, 2024

Land Use Control Information System:

LUCIS

The LUCIS database is maintained by the U.S. Department of the Navy and contains information for former Base Realignment and Closure (BRAC) properties across the United States.

Government Publication Date: Sep 1, 2006

Institutional Control Boundaries at NPL sites:

NPL IC

Boundaries of Institutional Control areas at sites on the United States Environmental Protection Agency (EPA)'s National Priorities List, or Proposed or Deleted, made available by the EPA's Shared Enterprise Geodata and Services (SEGS). United States Environmental Protection Agency (EPA)'s National Priorities List of the most serious uncontrolled or abandoned hazardous waste sites identified for possible long-term remedial action under the Superfund program. Institutional controls are non-engineered instruments such as administrative and legal controls that help minimize the potential for human exposure to contamination and/or protect the integrity of the remedy.

Government Publication Date: Oct 26, 2023

Emergency Response Notification System:

ERNS 1982 TO 1986

Database of oil and hazardous substances spill reports controlled by the National Response Center. The primary function of the National Response Center is to serve as the sole national point of contact for reporting oil, chemical, radiological, biological, and etiological discharges into the environment anywhere in the United States and its territories.

Government Publication Date: 1982-1986

Emergency Response Notification System:

ERNS 1987 TO 1989

Database of oil and hazardous substances spill reports controlled by the National Response Center. The primary function of the National Response Center is to serve as the sole national point of contact for reporting oil, chemical, radiological, biological, and etiological discharges into the environment anywhere in the United States and its territories.

Government Publication Date: 1987-1989

Emergency Response Notification System:

ERNS

Database of oil and hazardous substances spill reports made available by the United States Coast Guard National Response Center (NRC). The NRC fields initial reports for pollution and railroad incidents and forwards that information to appropriate federal/state agencies for response. These data contain initial incident data that has not been validated or investigated by a federal/state response agency.

Government Publication Date: Feb 20, 2024

The Assessment, Cleanup and Redevelopment Exchange System (ACRES) Brownfield Database:

FED BROWNFIELDS

Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties protects the environment, reduces blight, and takes development pressures off greenspaces and working lands. This data is provided by the United States Environmental Protection Agency (EPA) and includes Brownfield sites from the Cleanups in My Community (CIMC) web application.

Government Publication Date: Feb 7, 2024

FEMA Underground Storage Tank Listing:

FEMA UST

The Federal Emergency Management Agency (FEMA) of the Department of Homeland Security maintains a list of FEMA owned underground storage tanks

Government Publication Date: Dec 31, 2017

Facility Response Plan:

FRP

This listing contains facilities that have submitted Facility Response Plans (FRPs) to the U.S. Environmental Protection Agency (EPA). Facilities that could reasonably be expected to cause "substantial harm" to the environment by discharging oil into or on navigable waters are required to prepare and submit FRPs. Harm is determined based on total oil storage capacity, secondary containment and age of tanks, oil transfer activities, history of discharges, proximity to a public drinking water intake or sensitive environments. This listing includes FRP facilities from an applicable EPA FOIA file and Homeland Infrastructure Foundation-Level Data (HIFLD) data file.

Government Publication Date: May 2, 2023

Delisted Facility Response Plans:

DELISTED FRP

Order No: 24041700273

Facilities that once appeared in - and have since been removed from - the list of facilities that have submitted Facility Response Plans (FRP) to EPA. Facilities that could reasonably be expected to cause "substantial harm" to the environment by discharging oil into or on navigable waters are required to prepare and submit Facility Response Plans (FRPs). Harm is determined based on total oil storage capacity, secondary containment and age of tanks, oil transfer activities, history of discharges, proximity to a public drinking water intake or sensitive environments.

Government Publication Date: May 2, 2023

<u>HIST GAS STATIONS</u>

This historic directory of service stations is provided by the Cities Service Company. The directory includes Cities Service filling stations that were located throughout the United States in 1930.

Government Publication Date: Jul 1, 1930

Petroleum Refineries:

List of petroleum refineries from the U.S. Energy Information Administration (EIA) Refinery Capacity Report. Includes operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions. Survey locations adjusted using public data.

Government Publication Date: Feb 28, 2024

Petroleum Product and Crude Oil Rail Terminals:

BULK TERMINAL

A list of petroleum product and crude oil rail terminals from the U.S. Energy Information Administration (EIA), as well as petroleum terminals sourced from the Federal Communications Commission Data hosted by the Homeland Infrastructure Foundation-Level Database. Data includes operable bulk petroleum product terminals with a total bulk shell storage capacity of 50,000 barrels or more, and/or the ability to receive volumes from tanker, barge, or pipeline; also rail terminals handling the loading and unloading of crude oil with activity between 2017 and 2018. EIA petroleum product terminal data comes from the EIA-815 Bulk Terminal and Blender Report, which includes working, shell in operation, and shell idle for several major product groupings.

Government Publication Date: Sep 22, 2023

<u>LIEN on Property:</u> SEMS LIEN

The U.S. Environmental Protection Agency's (EPA) Superfund Enterprise Management System (SEMS) provides Lien details on applicable properties, such as the Superfund lien on property activity, the lien property information, and the parties associated with the lien.

Government Publication Date: Jan 26, 2024

Superfund Decision Documents:

SUPERFUND ROD

This database contains a list of decision documents for Superfund sites. Decision documents serve to provide the reasoning for the choice of (or) changes to a Superfund Site cleanup plan. The decision documents include completed Records of Decision (ROD), ROD Amendments, Explanations of Significant Differences (ESD) for active and archived sites stored in the Superfund Enterprise Management System (SEMS), along with other associated memos and files. This information is maintained and made available by the U.S. Environmental Protection Agency.

Government Publication Date: Dec 26, 2023

Formerly Utilized Sites Remedial Action Program:

DOE FUSRAP

The U.S. Department of Energy (DOE) established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974 to remediate sites where radioactive contamination remained from the Manhattan Project and early U.S. Atomic Energy Commission (AEC) operations. The DOE Office of Legacy Management (LM) established long-term surveillance and maintenance (LTS&M) requirements for remediated FUSRAP sites. DOE evaluates the final site conditions of a remediated site on the basis of risk for different future uses. DOE then confirms that LTS&M requirements will maintain protectiveness.

Government Publication Date: Mar 4, 2017

State

Registry of Hazardous Waste or Hazardous Substance Disposal Sites:

SHWS

This Registry of Hazardous Waste or Hazardous Substance Disposal Sites is maintained by the Iowa Department of Natural Resources. Hazardous disposal sites may have been plotted using Township, Section and Range and display approximate locations. Please note not all the known hazardous waste or contaminated sites that exist in the state are listed on the Registry. This database is state equivalent CERCLIS.

Government Publication Date: Dec 30, 2022

Removed from the Registry of Hazardous Waste or Hazardous Substance Disposal Sites:

DEL SHWS

A list of sites that have been delisted or removed from the Registry of Hazardous Waste or Hazardous Substance Disposal Sites. This list was made available by the Department of Natural Resources (DNR). This database is state equivalent CERCLIS.

Government Publication Date: Dec 31, 2022

<u>Delisted Registry of Hazardous Waste or Hazardous Substance Disposal Sites:</u>

DELISTED SHWS

Order No: 24041700273

List of sites which once appeared on - and have since been removed from - either the Hazardous Substance Remedial Fund and Sites Registry, or the list of sites removed from it, made available by the lowa Department of Natural Resources (DNR). The hazardous disposal sites have been plotted using Township, Section and Range and display approximate locations.

Contaminated Sites in Iowa:

The Contaminated Sites Section of the Iowa Department of Natural Resources (DNR) deals with a range of situations that involve contamination caused by a release of hazardous materials or hazardous waste products.

Government Publication Date: Jan 23, 2024

Solid Waste Management Facilities with Permits by the Iowa DNR:

SWF/LF

The lowa Department of Natural Resources (DNR) regulates the operation of facilities that manage, process and dispose solid waste. These facilities include sanitary landfills, appliance demanufacturing facilities, transfer stations, land application sites, incinerators, composting facilities, household hazardous materials sites, waste tire management and material recovery facilities. It includes all sites which are permitted or have had permits. It does not include non-permitted closed dumps.

Government Publication Date: Sep 15, 2022

Leaking Underground Storage Tank Sites in Iowa:

LUST

A list of Leaking Underground Storage Tank (LUST) sites where petroleum contamination has been found. This list was made available by a joint venture of the Iowa Department of Natural Resources (DNR) and the Public Safety State Fire Marshal Office (SFM).

Government Publication Date: Jan 18, 2024

Leaking Aboveground Storage Tanks:

LAST

A list of leaking aboveground storage tank (LAST) sites made available by the Iowa Department of Natural Resources (DNR).

Government Publication Date: Jan 23, 2024

Delisted Leaking Storage Tanks:

DELISTED LST

List of sites removed from either the Leaking Underground Storage Tank (LUST) sites list or the Leaking Aboveground Storage Tank (LAST) sites list made available by the Iowa Department of Natural Resources (DNR).

Government Publication Date: Jan 18, 2024

Underground Storage Tanks in Iowa:

UST

The Underground Storage Tanks (UST) Section of the Department of Natural Resources (DNR) is responsible for the regulation of underground storage tank systems used for the storage of regulated substances, primarily petroleum products.

Government Publication Date: Jan 18, 2024

Aboveground Storage Tanks:

AST

A list of aboveground storage tanks (AST) that contain primarily the aboveground storage of combustible or flammable products. This list is maintained by a joint venture between the lowa Department of Natural Resources (DNR) and the Public Safety State Fire Marshal Office (SFM).

Government Publication Date: Oct 26, 2017

Aboveground Storage Tanks (State Fire Marshal):

SFM AST

A list of aboveground storage tanks (AST) that primarily store combustible or flammable liquids. Aboveground petroleum storage tanks that are greater than 1,100 gallons in capacity must be registered with the state fire marshal's office. This list is provided by the Iowa Department of Public Safety's State Fire Marshal Division (SFM).

Government Publication Date: Mar 15, 2024

Delisted Storage Tanks:

DELISTED TANK

Order No: 24041700273

This database contains a list of storage tank sites that were removed by the Department of Natural Resources (DNR) from Storage Tanks Section.

Sites with Institutional Controls:

INST

A list of sites in the Land Recycling Program (LRP) that have Institutional Controls in place. This list was made available by the lowa Department of Natural Resources (DNR).

Government Publication Date: Jan 23, 2024

Land Recycling Program Sites:

VCP

The Land Recycling Program (LRP) of the lowa Department of Natural Resources (DNR) allows owners or other stakeholders of a property to voluntarily assess and implement remedial actions at a site that is contaminated or is perceived to be contaminated. The assessment of the property must address the severity of the contamination problems and the risks associated with the contamination.

Government Publication Date: Jan 23, 2024

BROWNFIELDS BROWNFIELDS

Brownfields are abandoned, idled, or under-used industrial and commercial facilities where expansion or redevelopment is complicated by real or perceived environmental contamination. The Iowa Department of Natural Resources (DNR) tracks brownfield sites as well as targeted brownfields assessment sites.

Government Publication Date: Jan 23, 2024

Tribal

Leaking Underground Storage Tanks (LUSTs) on Indian Lands:

INDIAN LUST

This list of leaking underground storage tanks (LUSTs) on Tribal/Indian Lands in Region 7, which includes lowa, is made available by the United States Environmental Protection Agency (EPA).

Government Publication Date: Oct 12, 2017

Underground Storage Tanks on Tribal/Indian Lands:

INDIAN UST

This list of underground storage tanks (USTs) on Tribal/Indian Lands in Region 7, which includes lowa, is made available by the United States Environmental Protection Agency (EPA).

Government Publication Date: Oct 24, 2023

Delisted Tribal Leaking Storage Tanks:

DELISTED INDIAN LST

Leaking Underground Storage Tank (LUST) facilities which once appeared on - and have since been removed from - the Regional Tribal/Indian LUST lists made available by the United States Environmental Protection Agency (EPA).

Government Publication Date: Oct 25, 2023

Delisted Tribal Underground Storage Tanks:

DELISTED INDIAN UST

Underground Storage Tank (UST) facilities which once appeared on - and have since been removed from - the Regional Tribal/Indian UST lists made available by the United States Environmental Protection Agency (EPA).

Government Publication Date: Oct 25, 2023

County

No County standard environmental record sources available for this State.

Additional Environmental Record Sources

Federal

PFAS Greenhouse Gas Emissions Data:

PFAS GHG

The U.S. Environmental Protection Agency's Greenhouse Gas Reporting Program (GHGRP) collects Greenhouse Gas (GHG) data from large emitting facilities (25,000 metric tons of carbon dioxide equivalent (CO2e) per year), and suppliers of fossil fuels and industrial gases that results in GHG emissions when used. Includes GHG emissions data for facilities that emit or have emitted since 2010 chemicals identified in EPA's CompTox Chemicals Dashboard list of PFAS without explicit structures and list of PFAS structures by DSSTox. PFAS emissions data has been identified for facilities engaged in the following industrial processes: Aluminum Production (GHGRP Subpart F), HCFC-22 Production and HFC-23 Destruction (Subpart O), Electronics Manufacturing (Subpart I), Fluorinated Gas Production (Subpart L), Magnesium Production (Subpart T), Electrical Transmission and Distribution Equipment Use (Subpart DD), and Manufacture of Electric Transmission and Distribution Equipment (Subpart SS). Over time, other industrial processes with required GHGRP reporting may include PFAS emissions data and the list of reportable gases may change over time.

Government Publication Date: Feb 5, 2024

Facility Registry Service/Facility Index:

FINDS/FRS

The Facility Registry Service (FRS) is a centrally managed database that identifies facilities, sites, or places subject to environmental regulations or of environmental interest. FRS creates high-quality, accurate, and authoritative facility identification records through rigorous verification and management procedures that incorporate information from program national systems, state master facility records, and data collected from EPA's Central Data Exchange registrations and data management personnel. This list is made available by the U.S. Environmental Protection Agency (EPA).

Government Publication Date: Feb 9, 2024

Toxics Release Inventory (TRI) Program:

TRIS

The U.S. Environmental Protection Agency's Toxics Release Inventory (TRI) is a database containing data on disposal or other releases of toxic chemicals from U.S. facilities and information about how facilities manage those chemicals through recycling, energy recovery, and treatment. There are currently 770 individually listed chemicals and 33 chemical categories covered by the TRI Program. Facilities that manufacture, process or otherwise use these chemicals in amounts above established levels must submit annual reporting forms for each chemical. Note that the TRI chemical list does not include all toxic chemicals used in the U.S. One of TRI's primary purposes is to inform communities about toxic chemical releases to the environment. This database includes TRI Reporting Data for calendar years 1987 through 2021 and Preliminary Data for 2022.

Government Publication Date: Sep 20, 2023

PFOA/PFOS Contaminated Sites:

PFAS NPL

This list of Superfund Sites with Per- and Polyfluoroalkyl Substances (PFAS) detections is made available by the U.S. Environmental Protection Agency (EPA) in their PFAS Analytic Tools data, previously the list was obtained by EPA FOIA requests. EPA's Office of Land and Emergency Management and EPA Regional Offices maintain what is known about site investigations, contamination, and remedial actions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) where PFAS is present in the environment. Limitations: Detections of PFAS at National Priorities List (NPL) sites do not mean that people are at risk from PFAS, are exposed to PFAS, or that the site is the source of the PFAS. The information in the Superfund NPL and Superfund Alternative Agreement (SAA) PFAS detection site list is years old and may not be accurate today. Site information such as site name, site ID, and location has been confirmed for accuracy; however, PFAS-related information such as media sampled, drinking water being above the health advisory, or mitigation efforts has not been verified. For Federal Facilities data, the other Federal agencies (OFA) are the lead agency for their data and provided them to EPA.

Government Publication Date: Mar 19, 2024

Federal Agency Locations with Known or Suspected PFAS Detections:

PFAS FED SITES

List of Federal agency locations with known or suspected detections of Per- and Polyfluoroalkyl Substances (PFAS), made available by the U.S. Environmental Protection Agency (EPA) in their PFAS Analytic Tools data. EPA outlines that these data are gathered from several federal entities, such as the Federal Superfund program, Department of Defense (DOD), National Aeronautics and Space Administration, Department of Transportation, and Department of Energy. The dates this data was extracted for the PFAS Analytic Tools range from March 2022 to September 2023. Sites on this list do not necessarily reflect the source/s of PFAS contamination and detections do not indicate level of risk or human exposure at the site. Agricultural notifications in this data are limited to DOD sites only. At this time, the EPA is aware that this list is not comprehensive of all Federal agencies. *Government Publication Date: Sep 5, 2023*

SSEHRI PFAS Contamination Sites:

PFAS SSEHRI

This PFAS Contamination Site Tracker database is compiled by the Social Science Environmental Health Research Institute (SSEHRI) at Northeastern University. According to the SSEHRI, the database records qualitative and quantitative data from each known site of PFAS contamination, including timeline of discovery, sources, levels, health impacts, community response, and government response. The goal of this database is to compile information and support public understanding of the rapidly unfolding issue of PFAS contamination. All data presented was extracted from government websites, news articles, or publicly available documents, and this is cited in the tracker. Locations for the Known PFAS Contamination Sites are sourced from the PFAS Sites and Community Resources Map, credited to the Northeastern University's PFAS Project Lab, Silent Spring Institute, and the PFAS-REACH team. Disclaimer: The source conveys the data undergoes regular updates as new information becomes available, some sites may be missing and/or contain information that is incorrect or outdated, as well as their information represents all contamination sites SSEHRI is aware of, not all possible contamination sites. This data is not intended to be used for legal purposes. Access the following source link for the most current information: https://pfasproject.com/pfas-sites-and-community-resources/

Government Publication Date: May 19, 2023

National Response Center PFAS Spills:

ERNS PFAS

Order No: 24041700273

This Per- and Poly-Fluoroalkyl Substances (PFAS) Spills dataset is made available via the U.S. Environmental Protection Agency's (EPA) PFAS Analytic Tools. The National Response Center (NRC), operated by the U.S. Coast Guard, is the designated federal point of contact for reporting all oil, chemical, and other discharges into the environment, for the United States and its territories. This dataset contains NRC spill information from 1990 to the present that is restricted to records associated with PFAS and PFAS-containing materials. Incidents are filtered to include only records with a "Material Involved" or "Incident Description" related to Aqueous Film Forming Foam (AFFF). The keywords used to filter the data included "AFFF," "Fire Fighting Foam," "Aqueous Film Forming Foam," "PFAS," "PERFL," "PFOA," "PFOS," and "Genx." Limitations: The data from the NRC website contains initial incident data that has not been validated or investigated by a federal/state response agency. Keyword searches may misidentify some incident reports that do not contain PFAS. This dataset should also not be considered to be exhaustive of all PFAS spills/release incidents

Government Publication Date: Jan 24, 2024

PFAS NPDES Discharge Monitoring:

PFAS NPDES

This list of National Pollutant Discharge Elimination System (NPDES) permitted facilities with required monitoring for Per- and Polyfluoroalkyl (PFAS) Substances is made available via the U.S. Environmental Protection Agency (EPA)'s PFAS Analytic Tools. Any point-source wastewater discharger to waters of the United States must have a NPDES permit, which defines a set of parameters for pollutants and monitoring to ensure that the discharge does not degrade water quality or impair human health. This list includes NPDES permitted facilities associated with permits that monitor for Per- and Polyfluoroalkyl Substances (PFAS), limited to the years 2007 - present. EPA further advises the following regarding these data: currently, fewer than half of states have required PFAS monitoring for at least one of their permittees, and fewer states have established PFAS effluent limits for permittees. For states that may have required monitoring, some reporting and data transfer issues may exist on a state-by-state basis.

Government Publication Date: Feb 19, 2024

Perfluorinated Alkyl Substances (PFAS) from Toxic Release Inventory:

PFAS TRI

List of Toxics Release Inventory (TRI) facilities at which the reported chemical is a per- or polyfluoroalkyl (PFAS) substance included in the U.S. Environmental Protection Agency's (EPA) consolidated PFAS Master List of PFAS Substances. Encompasses Toxics Release Inventory records included in the EPA PFAS Analytic Tools. The EPA's TRI database currently tracks information on disposal or releases of 770 individually listed toxic chemicals and 33 chemical categories from thousands of U.S. facilities and details about how facilities manage those chemicals through recycling, energy recovery, and treatment. This listing includes TRI Reporting Data for calendar years 1987 through 2021 and Preliminary Data for 2022.

Government Publication Date: Sep 20, 2023

Perfluorinated Alkyl Substances (PFAS) Water Quality:

PFAS WATER

The Water Quality Portal (WQP) is a cooperative service sponsored by the United States Geological Survey (USGS), the Environmental Protection Agency (EPA), and the National Water Quality Monitoring Council (NWQMC). This listing includes records from the Water Quality Portal where the characteristic (environmental measurement) is in the Environmental Protection Agency (EPA)'s consolidated Master List of PFAS Substances.

Government Publication Date: Jul 20, 2020

PFAS TSCA Manufacture and Import Facilities:

PFAS TSCA

The U.S. Environmental Protection Agency (EPA) issued the Chemical Data Reporting (CDR) Rule under the Toxic Substances Control Act (TSCA) and requires chemical manufacturers and facilities that manufacture or import chemical substances to report data to EPA. This list is specific only to TSCA Manufacture and Import Facilities with reported per- and poly-fluoroalkyl (PFAS) substances. Data file is sourced from EPA's PFAS Analytic Tools TSCA dataset which includes CDR/Inventory Update Reporting data from 1998 up to 2020. Disclaimer: This data file includes production and importation data for chemicals identified in EPA's CompTox Chemicals Dashboard list of PFAS without explicit structures and list of PFAS structures in DSSTox. Note that some regulations have specific chemical structure requirements that define PFAS differently than the lists in EPA's CompTox Chemicals Dashboard. Reporting information on manufactured or imported chemical substance amounts should not be compared between facilities, as some companies claim Chemical Data Reporting Rule data fields for PFAS information as Confidential Business Information.

Government Publication Date: Jan 5, 2023

PFAS Waste Transfers from RCRA e-Manifest :

PFAS E-MANIFEST

Order No: 24041700273

This Per- and Poly-Fluoroalkyl Substances (PFAS) Waste Transfers dataset is made available via the U.S. Environmental Protection Agency's (EPA) PFAS Analytic Tools. Every shipment of hazardous waste in the U.S. must be accompanied by a shipment manifest, which is a critical component of the cradle-to-grave tracking of wastes mandated by the Resource Conservation and Recovery Act (RCRA). According to the EPA, currently no Federal Waste Code exists for any PFAS compounds. To work around the lack of PFAS waste codes in the RCRA database, EPA developed the PFAS Transfers dataset by mining e-Manifest records containing at least one of these common PFAS keywords: • PFAS • PFOA • PFOS • PERFL • AFFF • GENX • GEN-X (plus the Vermont state-specific waste codes). Limitations: Amount or concentration of PFAS being transferred cannot be determined from the manifest information. Keyword searches may misidentify some manifest records that do not contain PFAS. This dataset should also not be considered to be exhaustive of all PFAS waste transfers.

Government Publication Date: Feb 25, 2024

PFAS Industry Sectors:

This Per- and Poly-Fluoroalkyl Substances (PFAS) Industry Sectors dataset is made available via the U.S. Environmental Protection Agency's (EPA) PFAS Analytic Tools. The EPA developed the dataset from various sources that show which industries may be handling PFAS including: EPA's Enforcement and Compliance History Online (ECHO) records restricted to potential PFAS-handling industry sectors; ECHO records for Fire Training Sites identified where fire-fighting foam may have been used in training exercises; and 14 CFR Part 139 Airports compiled from historic and current records from the FAA Airport Data and Information Portal. Since July 2006, all certificated Part 139 Airports are required to have fire-fighting foam onsite that meet certain military specifications, which to date have been fluorinated (Aqueous Film Forming Foam). Limitations: Inclusion in this dataset does not indicate that PFAS are being manufactured, processed, used, or released by the facility. Listed facilities potentially handle PFAS based on their industrial profile, but are unconfirmed by the EPA. Keyword searches in ECHO for Fire Training sites may misidentify some facilities and should not be considered to be an exhaustive list of fire training facilities in the U.S.

Government Publication Date: Dec 4, 2023

Hazardous Materials Information Reporting System:

HMIRS

The Hazardous Materials Incident Reporting System (HMIRS) database contains unintentional hazardous materials release information reported to the U.S. Department of Transportation. Pipeline and Hazardous Materials Safety Administration.

Government Publication Date: Nov 26, 2023

National Clandestine Drug Labs:

NCDL

The U.S. Department of Justice ("the Department"), Drug Enforcement Administration (DEA), provides this data as a public service. It contains addresses of some locations where law enforcement agencies reported they found chemicals or other items that indicated the presence of either clandestine drug laboratories or dumpsites. In most cases, the source of the entries is not the Department, and the Department has not verified the entry and does not guarantee its accuracy.

Government Publication Date: Jul 26, 2023

Toxic Substances Control Act:

TSCA

The U.S. Environmental Protection Agency (EPA) is amending the Toxic Substances Control Act (TSCA) section 8(a) Inventory Update Reporting (IUR) rule and changing its name to the Chemical Data Reporting (CDR) rule. The CDR enables EPA to collect and publish information on the manufacturing, processing, and use of commercial chemical substances and mixtures (referred to hereafter as chemical substances) on the TSCA Chemical Substance Inventory (TSCA Inventory). This includes current information on chemical substance production volumes, manufacturing sites, and how the chemical substances are used. This information helps the Agency determine whether people or the environment are potentially exposed to reported chemical substances. EPA publishes submitted CDR data that is not Confidential Business Information (CBI). EPA CDR collections occur approximately every four years and reporting requirements change per collection.

Government Publication Date: May 12, 2022

HIST TSCA:

The Environmental Protection Agency (EPA) is amending the Toxic Substances Control Act (TSCA) section 8(a) Inventory Update Reporting (IUR) rule and changing its name to the Chemical Data Reporting (CDR) rule.

The 2006 IUR data summary report includes information about chemicals manufactured or imported in quantities of 25,000 pounds or more at a single site during calendar year 2005. In addition to the basic manufacturing information collected in previous reporting cycles, the 2006 cycle is the first time EPA collected information to characterize exposure during manufacturing, processing and use of organic chemicals. The 2006 cycle also is the first time manufacturers of inorganic chemicals were required to report basic manufacturing information.

Government Publication Date: Dec 31, 2006

FTTS Administrative Case Listing:

FTTS ADMIN

An administrative case listing from the Federal Insecticide, Fungicide, & Rodenticide Act (FIFRA) and Toxic Substances Control Act (TSCA), together known as FTTS. This database was obtained from the Environmental Protection Agency's (EPA) National Compliance Database (NCDB). The FTTS and NCDB was shut down in 2006.

Government Publication Date: Jan 19, 2007

FTTS Inspection Case Listing:

FTTS INSP

An inspection case listing from the Federal Insecticide, Fungicide, & Rodenticide Act (FIFRA) and Toxic Substances Control Act (TSCA), together known as FTTS. This database was obtained from the Environmental Protection Agency's (EPA) National Compliance Database (NCDB). The FTTS and NCDB was shut down in 2006.

Government Publication Date: Jan 19, 2007

Potentially Responsible Parties List:

PRP

Early in the site cleanup process, the U.S. Environmental Protection Agency (EPA) conducts a search to find the Potentially Responsible Parties (PRPs). The EPA looks for evidence to determine liability by matching wastes found at the site with parties that may have contributed wastes to the site. This listing contains PRPs, Noticed Parties, at sites in the EPA's Superfund Enterprise Management System (SEMS).

Government Publication Date: Jan 26, 2024

State Coalition for Remediation of Drycleaners Listing:

SCRD DRYCLEANER

Order No: 24041700273

The State Coalition for Remediation of Drycleaners (SCRD) was established in 1998, with support from the U.S. Environmental Protection Agency (EPA) Office of Superfund Remediation and Technology Innovation. Coalition members are states with mandated programs and funding for drycleaner site remediation. Current members are Alabama, Connecticut, Florida, Illinois, Kansas, Minnesota, Missouri, North Carolina, Oregon, South Carolina, Tennessee, Texas, and Wisconsin. Since 2017, the SCRD no longer maintains this data, refer to applicable state source data where available.

Government Publication Date: Nov 08, 2017

Integrated Compliance Information System (ICIS):

ICIS

The Integrated Compliance Information System (ICIS) database contains integrated enforcement and compliance information across most of U.S. Environmental Protection Agency's (EPA) programs. The vision for ICIS is to replace EPA's independent databases that contain enforcement data with a single repository for that information. Currently, ICIS contains all Federal Administrative and Judicial enforcement actions and a subset of the Permit Compliance System (PCS), which supports the National Pollutant Discharge Elimination System (NPDES). This information is maintained by the EPA Headquarters and at the Regional offices. A future release of ICIS will completely replace PCS and will integrate that information with Federal actions already in the system. ICIS also has the capability to track other activities that support compliance and enforcement programs, including incident tracking, compliance assistance, and compliance monitoring.

Government Publication Date: Aug 26, 2023

<u>Drycleaner Facilities:</u>

FED DRYCLEANERS

A list of drycleaner facilities from Enforcement and Compliance History Online (ECHO) data as made available by the U.S. Environmental Protection Agency (EPA), sourced from the ECHO Exporter file. The EPA tracks facilities that possess NAIC and SIC codes that classify businesses as drycleaner establishments.

Government Publication Date: Jan 20, 2024

Delisted Drycleaner Facilities:

DELISTED FED DRY

List of sites removed from the list of Drycleaner Facilities (sites in the EPA's Integrated Compliance Information System (ICIS) with NAIC or SIC codes identifying the business as a drycleaner establishment).

Government Publication Date: Jan 20, 2024

Formerly Used Defense Sites:

FUDS

Formerly Used Defense Sites (FUDS) are properties that were formerly owned by, leased to, or otherwise possessed by and under the jurisdiction of the Secretary of Defense prior to October 1986, where the Department of Defense (DOD) is responsible for an environmental restoration. The FUDS Annual Report to Congress (ARC) is published by the U.S. Army Corps of Engineers (USACE). This data is compiled from the USACE's Geospatial FUDS data layers and Homeland Infrastructure Foundation-Level Data (HIFLD) FUDS dataset which applies to the Fiscal Year 2021 FUDS Inventory.

Government Publication Date: May 15, 2023

FUDS Munitions Response Sites:

FUDS MRS

Boundaries of Munitions Response Sites (MRS), published with the Formerly Used Defense Sites (FUDS) Annual Report to Congress (ARC) by the U.S. Army Corps of Engineers (USACE). An MRS is a discrete location within a Munitions response area (MRA) that is known to require a munitions response. An MRA means any area on a defense site that is known or suspected to contain unexploded ordnance (UXO), discarded military munitions (DMM), or munitions constituents (MC). This data is compiled from the USACE's Geospatial MRS data layers and Homeland Infrastructure Foundation-Level Data (HIFLD) MRS dataset.

Government Publication Date: May 15, 2023

Former Military Nike Missile Sites:

FORMER NIKE

This information was taken from report DRXTH-AS-IA-83A016 (Historical Overview of the Nike Missile System, 12/1984) which was performed by Environmental Science and Engineering, Inc. for the U.S. Army Toxic and Hazardous Materials Agency Assessment Division. The Nike system was deployed between 1954 and the mid-1970's. Among the substances used or stored on Nike sites were liquid missile fuel (JP-4); starter fluids (UDKH, aniline, and furfuryl alcohol); oxidizer (IRFNA); hydrocarbons (motor oil, hydraulic fluid, diesel fuel, gasoline, heating oil); solvents (carbon tetrachloride, trichloroethylene, trichloroethane, stoddard solvent); and battery electrolyte. The quantities of material a disposed of and procedures for disposal are not documented in published reports. Virtually all information concerning the potential for contamination at Nike sites is confined to personnel who were assigned to Nike sites. During deactivation most hardware was shipped to depot-level supply points. There were reportedly instances where excess materials were disposed of on or near the site itself at closure. There was reportedly no routine site decontamination.

Government Publication Date: Dec 2, 1984

PHMSA Pipeline Safety Flagged Incidents:

PIPELINE INCIDENT

Order No: 24041700273

This list of flagged pipeline incidents is made available by the U.S. Department of Transportation (US DOT) Pipeline and Hazardous Materials Safety Administration (PHMSA). PHMSA regulations require incident and accident reports for five different pipeline system types. Accidents reported on hazardous liquid gravity lines (§195.13) and reporting-regulated-only hazardous liquid gathering lines (§195.15) and incidents reported on Type R gas gathering (§192.8(c)) are not included in the flagged incident file data.

Government Publication Date: Nov 6, 2023

Material Licensing Tracking System (MLTS):

MLTS

A list of sites that store radioactive material subject to the Nuclear Regulatory Commission (NRC) licensing requirements. This list is maintained by the NRC. As of September 2016, the NRC no longer releases location information for sites. Site locations were last received in July 2016.

Government Publication Date: May 11, 2021

Historic Material Licensing Tracking System (MLTS) sites:

HIST MLTS

A historic list of sites that have inactive licenses and/or removed from the Material Licensing Tracking System (MLTS). In some cases, a site is removed from the MLTS when the state becomes an "Agreement State". An Agreement State is a State that has signed an agreement with the Nuclear Regulatory Commission (NRC) authorizing the State to regulate certain uses of radioactive materials within the State.

Government Publication Date: Jan 31, 2010

Mines Master Index File:
MINES

The Master Index File (MIF) is provided by the United States Department of Labor, Mine Safety and Health Administration (MSHA). This file, which was originally created in the 1970's, contained many Mine-IDs that were invalid. MSHA removes invalid IDs from the MIF upon discovery. MSHA applicable data includes the following: all Coal and Metal/Non-Metal mines under MSHA's jurisdiction since 1/1/1970; mine addresses for all mines in the database except for Abandoned mines prior to 1998 from MSHA's legacy system (addresses may or may not correspond with the physical location of the mine itself); violations that have been assessed penalties as a result of MSHA inspections beginning on 1/1/2000; and violations issued as a result of MSHA inspections conducted beginning on 1/1/2000.

Government Publication Date: May 1, 2023

Surface Mining Control and Reclamation Act Sites:

SMCRA

An inventory of land and water impacted by past mining (primarily coal mining) is maintained by the Office of Surface Mining Reclamation and Enforcement (OSMRE) to provide information needed to implement the Surface Mining Control and Reclamation Act of 1977 (SMCRA). This inventory contains information on the type and extent of Abandoned Mine Land (AML) impacts, as well as information on the cost associated with the reclamation of those problems. The data is based upon field surveys by State, Tribal, and OSMRE program officials. It is dynamic to the extent that it is modified as new problems are identified and existing problems are reclaimed. Disclaimer: Per the OSMRE, States and tribes who enter their data into eAMLIS (AML Inventory System) may truncate their latitude and longitude so the precise location of usually dangerous AMLs is not revealed in an effort to protect the public from searching for these AMLs, most of which are on private property. If more precise location information is needed, please contact the applicable state/tribe of interest.

Government Publication Date: Jun 13, 2023

Mineral Resource Data System:

MRDS

The Mineral Resource Data System (MRDS) is a collection of reports describing metallic and nonmetallic mineral resources throughout the world. Included are deposit name, location, commodity, deposit description, geologic characteristics, production, reserves, resources, and references. This database contains the records previously provided in the Mineral Resource Data System (MRDS) of USGS and the Mineral Availability System/Mineral Industry Locator System (MAS/MILS) originated in the U.S. Bureau of Mines, which is now part of USGS. The USGS has ceased systematic updates of the MRDS database with their focus more recently on deposits of critical minerals while providing a well-documented baseline of historical mine locations from USGS topographic maps.

Government Publication Date: Mar 15, 2016

DOE Legacy Management Sites:

LM SITES

The U.S. Department of Energy (DOE) Office of Legacy Management (LM) currently manages radioactive and chemical waste, environmental contamination, and hazardous material at over 100 sites across the U.S. The LM manages sites with diverse regulatory drivers (statutes or programs that direct cleanup and management requirements at DOE sites) or as part of internal DOE or congressionally-recognized programs, such as but not limited to: Formerly Utilized Sites Remedial Action Program (FUSRAP), Uranium Mill Tailings Radiation Control Act (UMTRCA Title I, Tile II), Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Resource Conservation and Recovery Act (RCRA), Decontamination and Decommissioning (D&D), Nuclear Waste Policy Act (NWPA). This site listing includes data exported from the DOE Office of LM's Geospatial Environmental Mapping System (GEMS). GEMS Data disclaimer: The DOE Office of LM makes no representation or warranty, expressed or implied, regarding the use, accuracy, availability, or completeness of the data presented herein.

Government Publication Date: Dec 12, 2023

Alternative Fueling Stations: ALT FUELS

This list of alternative fueling stations is sourced from the Alternative Fuels Data Center (AFDC). The U.S. Department of Energy's Office of Energy Efficiency & Renewable Energy launched the AFDC in 1991 as a repository for alternative fuel vehicle performance data, which provides a wealth of information and data on alternative and renewable fuels, advanced vehicles, fuel-saving strategies, and emerging transportation technologies. The data includes Biodiesel (B20 and above), Compressed Natural Gas (CNG), Electric, Ethanol (E85), Hydrogen, Liquefied Natural Gas (LNG), Propane (LPG), and Renewable Diesel (R20 and above) fuel type locations.

Government Publication Date: Nov 27, 2023

Superfunds Consent Decrees:

CONSENT DECREES

Order No: 24041700273

This list of Superfund consent decrees is provided by the Department of Justice, Environment & Natural Resources Division (ENRD) through a Freedom of Information Act (FOIA) applicable file. This listing includes Consent Decrees for CERCLA or Superfund Sites filed and/or as proposed within the ENRD's Case Management System (CMS) since 2010. CMS may not reflect the latest developments in a case nor can the agency guarantee the accuracy of the data. ENRD Disclaimer: Congress excluded three discrete categories of law enforcement and national security records from the requirements of the FOIA; response is limited to those records that are subject to the requirements of the FOIA; however, this should not be taken as an indication that excluded records do, or do not, exist.

Government Publication Date: Apr 19, 2023

AFS AFS

This EPA retired Air Facility System (AFS) dataset contains emissions, compliance, and enforcement data on stationary sources of air pollution. Regulated sources cover a wide spectrum; from large industrial facilities to relatively small operations such as dry cleaners. AFS does not contain data on facilities that are solely asbestos demolition and/or renovation contractors, or landfills. ECHO Clean Air Act data from AFS are frozen and reflect data as of October 17, 2014; the EPA retired this system for Clean Air Act stationary sources and transitioned to ICIS-Air.

Government Publication Date: Oct 17, 2014

Registered Pesticide Establishments:

SSTS

This national list of active EPA-registered foreign and domestic pesticide and/or device-producing establishments is based on data from the Section Seven Tracking System (SSTS). The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) Section 7 requires that each producing establishment must place its EPA establishment number on the label or immediate container of each pesticide, active ingredient or device produced. An EPA establishment number on a pesticide product label identifies the EPA registered location where the product was produced. The list of establishments is made available by the U.S. Environmental Protection Agency (EPA).

Government Publication Date: Mar 1, 2023

Polychlorinated Biphenyl (PCB) Transformers:

PCBT

Locations of Transformers Containing Polychlorinated Biphenyls (PCBs) registered with the United States Environmental Protection Agency. PCB transformer owners must register their transformer(s) with EPA. Although not required, PCB transformer owners who have removed and properly disposed of a registered PCB transformer may notify EPA to have their PCB transformer de-registered. Data made available by EPA.

Government Publication Date: Oct 15, 2019

Polychlorinated Biphenyl (PCB) Notifiers:

PCB

Facilities included in the national list of facilities that have notified the United States Environmental Protection Agency (EPA) of Polychlorinated Biphenyl (PCB) activities. Any company or person storing, transporting or disposing of PCBs or conducting PCB research and development must notify the EPA and receive an identification number.

Government Publication Date: Oct 30, 2023

State

Spill incidents reported to lowa DNR and tracked in the Hazardous Substance Incident database:

SPILLS

Order No: 24041700273

Spill incidents reported to the Iowa Department of Natural Resources (DNR) and tracked in the Hazardous Substance Incident database.

Government Publication Date: Oct 25, 2023

<u>Dry Cleaning Facilities:</u>

DRYCLEANERS

A listing of drycleaners in Iowa. This is maintained by Iowa's Department of Natural Resources's Air Bureau Quality.

Government Publication Date: Jan 16, 2024

<u>Delisted Drycleaners:</u>
DELISTED DRYCLEANERS

List of sites which onece appeared on - and have since been removed from - the list of drycleaners made available by lowa's Department of Natural Resources Air Quality Bureau.

Government Publication Date: Jan 16, 2024

Air Permitted Facilities:

AIR PERMITS

The lowa Department of Natural Resources (DNR) maintains this list of facilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities with air quality interest such as Feed Mills, Group 1 Grain Elevators, and Permit By Rule (PBR) Spray Booths.

Government Publication Date: Jan 16, 2024

Per- and Polyfluoroalkyl Substances (PFAS) Use or Release:

PFAS

Order No: 24041700273

List of known or suspected Per- and Polyfluoroalkyl Substances (PFAS) release locations and sites engaged in a business type that is known to use PFAS in some manner. Data made available by the Iowa Department of Natural Resources.

Government Publication Date: Jan 13, 2021

<u>Liens Filed Listing:</u>

A list of Underground Storage Tank Fund Liens maintained by the Iowa Department of Natural Resources.

Government Publication Date: Dec 6, 2023

TIER 2

A list of Tier II facilities sourced from the Iowa Department of Natural Resources. Facilities that store hazardous chemicals above certain quantities must submit an annual emergency and hazardous chemical inventory on a Tier II form. This is a requirement of Section 311/312 of the Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA).

Government Publication Date: Aug 14, 2023

Tribal

No Tribal additional environmental record sources available for this State.

County

No County additional environmental record sources available for this State.

Definitions

<u>Database Descriptions:</u> This section provides a detailed explanation for each database including: source, information available, time coverage, and acronyms used. They are listed in alphabetic order.

<u>Detail Report</u>: This is the section of the report which provides the most detail for each individual record. Records are summarized by location, starting with the project property followed by records in closest proximity.

<u>Distance:</u> The distance value is the distance between plotted points, not necessarily the distance between the sites' boundaries. All values are an approximation.

<u>Direction:</u> The direction value is the compass direction of the site in respect to the project property and/or center point of the report.

<u>Elevation:</u> The elevation value is taken from the location at which the records for the site address have been plotted. All values are an approximation. Source: Google Elevation API.

Executive Summary: This portion of the report is divided into 3 sections:

'Report Summary'- Displays a chart indicating how many records fall on the project property and, within the report search radii.

'Site Report Summary'-Project Property'- This section lists all the records which fall on the project property. For more details, see the 'Detail Report' section.

'Site Report Summary-Surrounding Properties'- This section summarizes all records on adjacent properties, listing them in order of proximity from the project property. For more details, see the 'Detail Report' section.

Map Key: The map key number is assigned according to closest proximity from the project property. Map Key numbers always start at #1. The project property will always have a map key of '1' if records are available. If there is a number in brackets beside the main number, this will indicate the number of records on that specific property. If there is no number in brackets, there is only one record for that property.

The symbol and colour used indicates 'elevation': the red inverted triangle will dictate 'ERIS Sites with Lower Elevation', the yellow triangle will dictate 'ERIS Sites with Higher Elevation' and the orange square will dictate 'ERIS Sites with Same Elevation.'

<u>Unplottables:</u> These are records that could not be mapped due to various reasons, including limited geographic information. These records may or may not be in your study area, and are included as reference.

Order No: 24041700273

Property Information

Order Number: 24041700273p

Date Completed: April 17, 2024

Project Number: 23S049.00 Phase 130 Task 307

Project Property: Sioux Gateway Airport NEPA

n/a Sioux City IA

Coordinates:

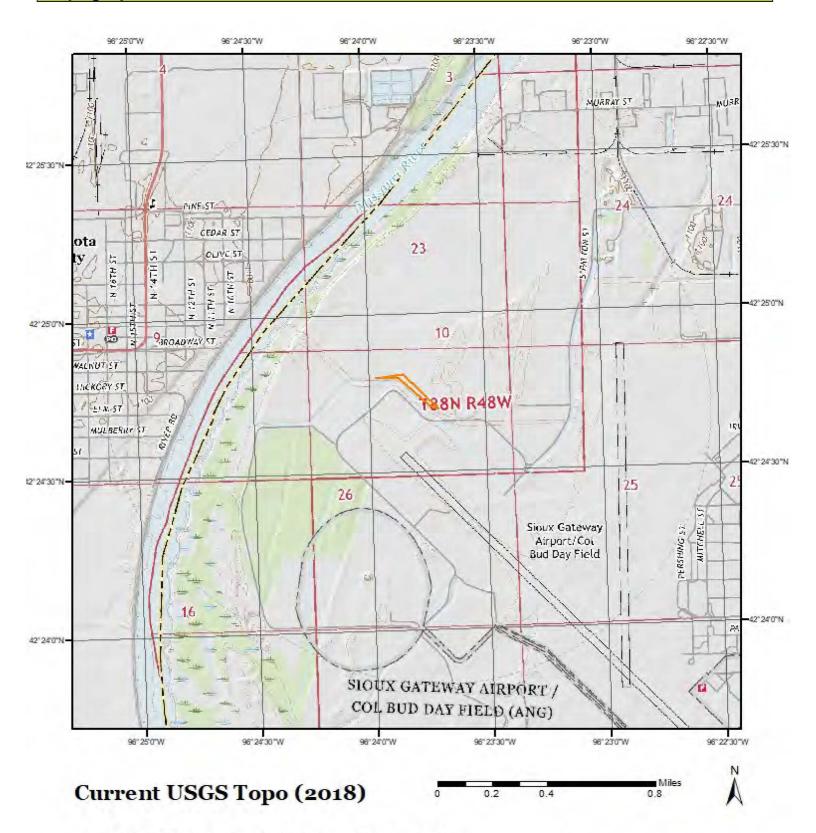
Latitude: 42.4127437 Longitude: -96.39699546

UTM Northing: 4698886.98761 Meters UTM Easting: 714182.712516 Meters

UTM Zone: UTM Zone 14T Elevation: 1,087.61 ft

Slope Direction: N

Topographic Information	2
Hydrologic Information	4
Geologic Information	7
Soil Information	
Wells and Additional Sources	
Summary	
Detail Report	24
Radon Information	
AppendixLiability Notice	34


The ERIS *Physical Setting Report - PSR* provides comprehensive information about the physical setting around a site and includes a complete overview of topography and surface topology, in addition to hydrologic, geologic and soil characteristics. The location and detailed attributes of oil and gas wells, water wells, public water systems and radon are also included for review.

The compilation of both physical characteristics of a site and additional attribute data is useful in assessing the impact of migration of contaminants and subsequent impact on soils and groundwater.

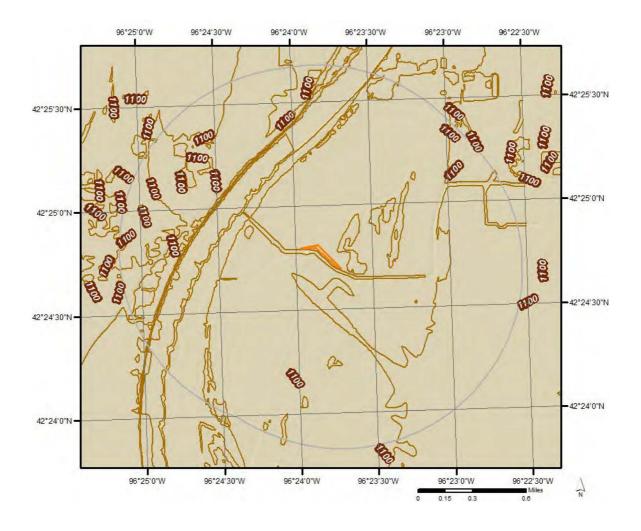
Disclaimer

This Report does not provide a full environmental evaluation for the site or adjacent properties. Please see the terms and disclaimer at the end of the Report for greater detail.

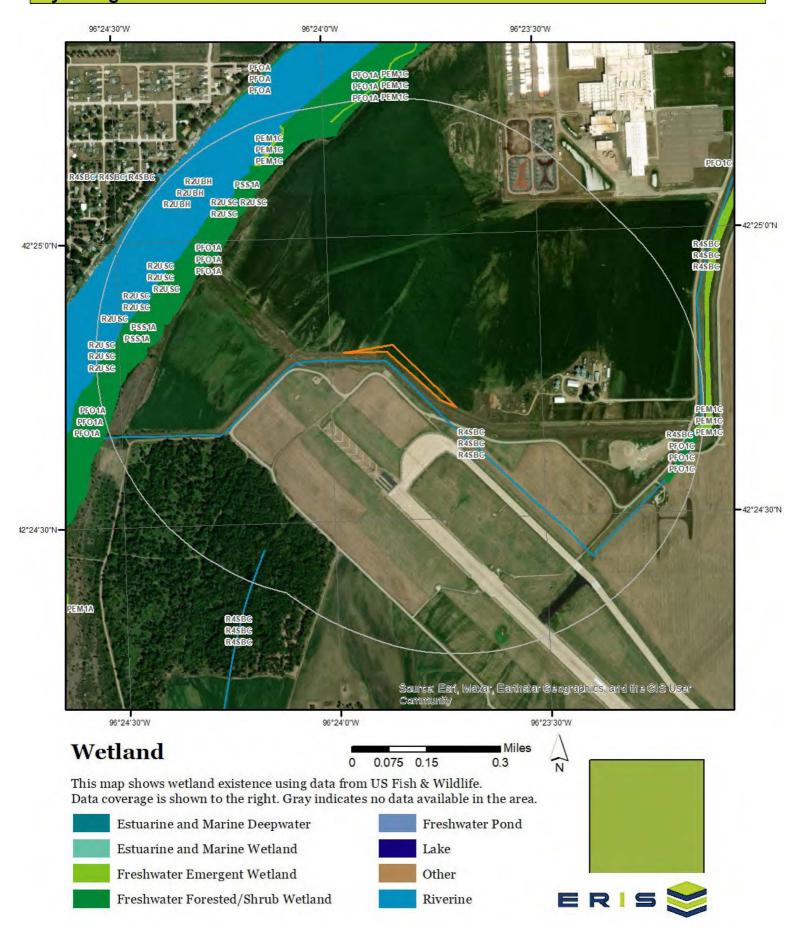
Topographic Information

Quadrangle(s): Sergeant Bluff,IA; Sioux City South,IA

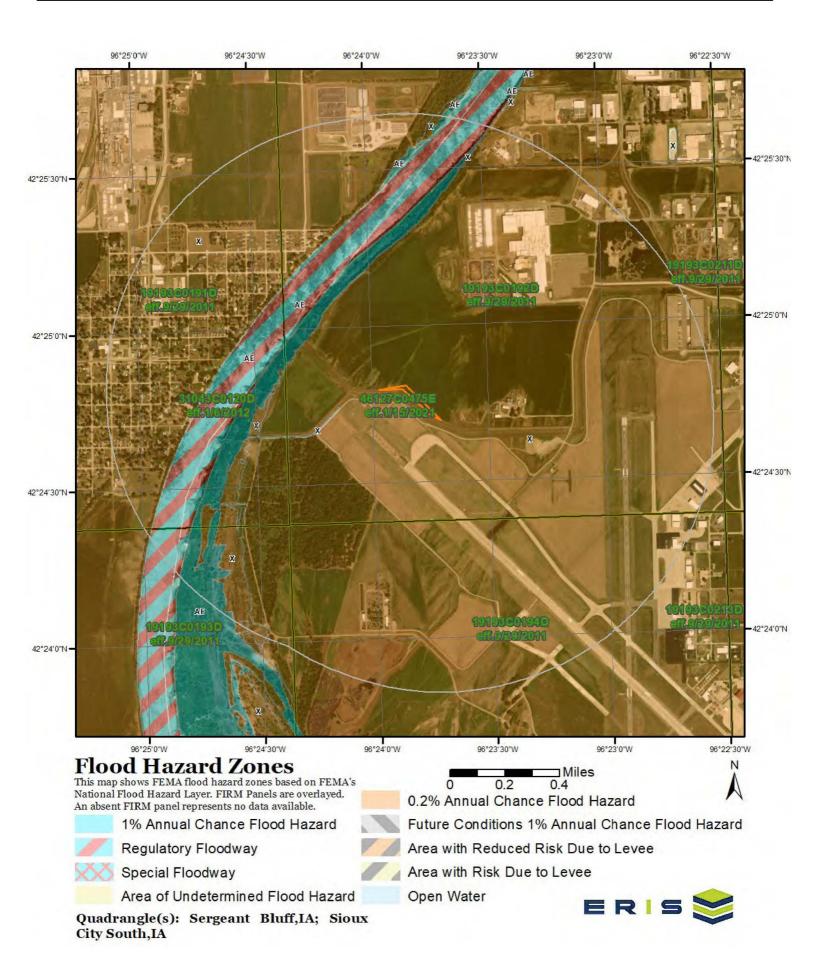
Source: USGS 7.5 Minute Topographic Map


Topographic Information

The previous topographic map(s) are created by seamlessly merging and cutting current USGS topographic data. Below are shaded relief map(s), derived from USGS elevation data to show surrounding topography in further detail.


Topographic information at project property:

Elevation: 1,087.61 ft


Slope Direction: N

Hydrologic Information

Hydrologic Information

Hydrologic Information

The Wetland Type map shows wetland existence overlaid on an aerial imagery. The Flood Hazard Zones map shows FEMA flood hazard zones overlaid on an aerial imagery. Relevant FIRM panels and detailed zone information is provided below. For detailed Zone descriptions please click the link: https://floodadvocate.com/fema-zone-definitions

Available FIRM Panels in area: 46127C0475E(effective:2021-01-15) 31043C0120D(effective:2012-01-06)

19193C0194D(effective:2011-09-29) 19193C0193D(effective:2011-09-29)

19193C0192D(effective:2011-09-29) 19193C0191D(effective:2011-09-29)

Order No: 24041700273p

Flood Zone AE-01

Zone: AE

Zone subtype:

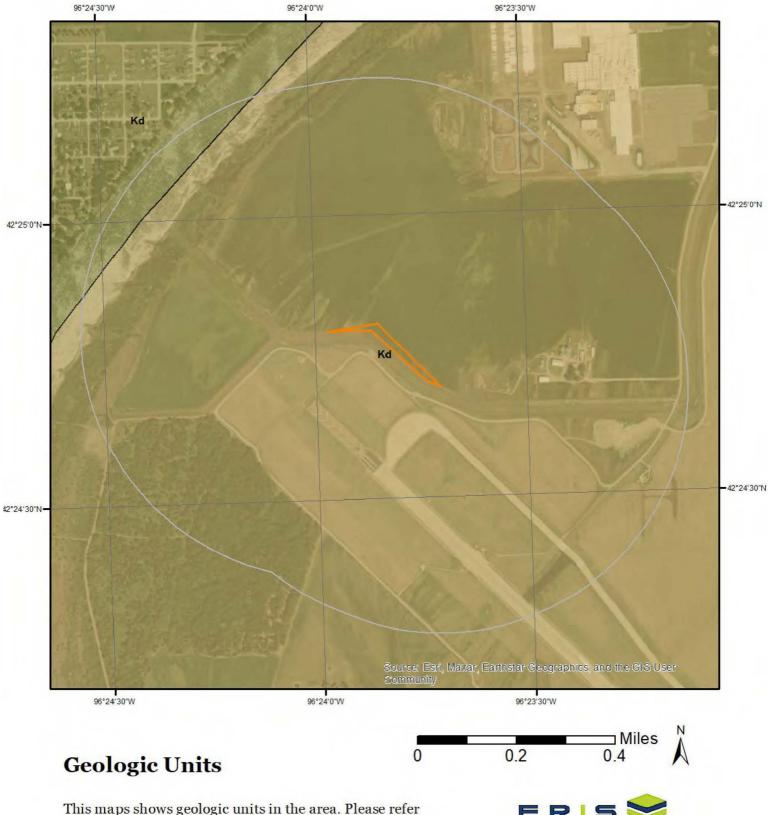
Flood Zone AE-11

Zone: AE

Zone subtype: FLOODWAY

Flood Zone X-01

Zone: X


Zone subtype: 0.2 PCT ANNUAL CHANCE FLOOD HAZARD

Flood Zone X-12

Zone: X

Zone subtype: AREA OF MINIMAL FLOOD HAZARD

Geologic Information

This maps shows geologic units in the area. Please refer to the report for detailed descriptions.

Geologic Information

The previous page shows USGS geology information. Detailed information about each unit is provided below.

Geologic Unit Kd

Unit Name: Dakata and Windrow Formations

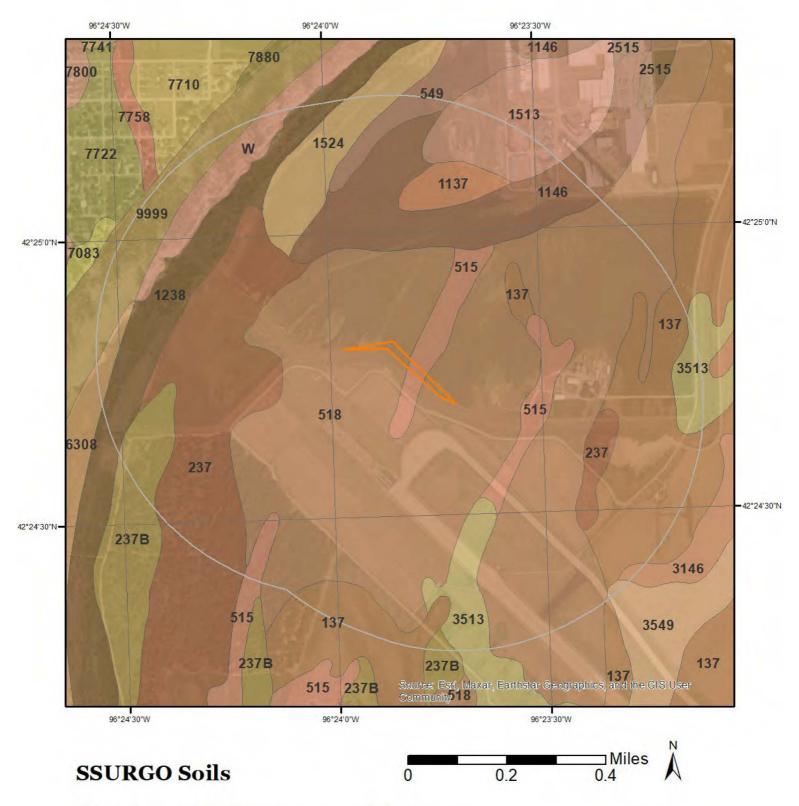
Unit Age: "Mid" Cretaceous; upper Albian-upper Cenomanian

Primary Rock Type: Sandstone Secondary Rock Type: Shale

Unit Description: Dakota Formation

Dakota Formation widespread in western lowa, lower sandstone-dominated Nishnabotna Member, upper mudstone/shale-dominated Woodbury Member. Correlative Windrow Formation found as erosional outliers in northeastern and north-central lowa. Primary lithologies: sandstone, quartzose, very fine to medium grained; mudstone/shale, light to dark gray, variably silty-sandy, noncalcareous (Woodbury Mbr.). Secondary lithologies: sandstone, medium to very coarse grained, part pebbly to gravelly, locally cemented by iron oxides (Nishnabotna Mbr., Windrow Fm.), gravel, quartz and chert clasts; siltstone; mudstone, red, pink, yellow-brown, black (carbonaceous). Minor: lignite; siderite (concretions, pedogenic sphaerosiderite pellets, cemented siltstone); massive iron ore, silty to sandy (Windrow Fm.). Maximum thickness Dakota Fm. 500 ft (150 m), commonly 100-300 ft (30-90 m); Windrow Fm. 40 ft (12

m).


Geologic Unit Kd

Unit Description:

Unit Name: Dakota Group
Unit Age: Early Cretaceous

Primary Rock Type: Sandstone
Secondary Rock Type: Shale

Upper part is white, light-gray, brownish-gray, yellow, redish-brown, and red sandstone and shale. Sandstone is very fine to coarse grained, friable, micaeous, crossbedded, and lenticular; locally contains gravel near base. contains numerous zones of ironstone and siltstone concretions of variable thickness. Middle part is light-gray, yellow, red brown and dark-gray, sandy carbonaceous shale; commonly contains a zone of concretions near top. Lower part is sandstone similar to that in upper except there are zones of siderite concretions and, locally a basal zone of chert pebbles. Approx. max thickness 600 ft.

This maps shows SSURGO soil units around the target property. Please refer to the report for detailed soil descriptions.

The previous page shows a soil map using SSURGO data from USDA Natural Resources Conservation Service. Detailed information about each unit is provided below.

Map Unit 1137 (0.19%)

Map Unit Name: Haynie silt loam, 0 to 2 percent slopes, occasionally flooded

Bedrock Depth - Min: null
Watertable Depth - Annual Min: 152cm

Drainage Class - Dominant: Moderately well drained

Hydrologic Group - Dominant:

B - Soils in this group have moderately low runoff potential when thoroughly

wet. Water transmission through the soil is unimpeded.

Major components are printed below

Haynie(80%)

horizon Ap(0cm to 18cm) Silt loam horizon C(18cm to 152cm) Silt loam

Component Description:

Minor map unit components are excluded from this report.

Map Unit: 1137 - Haynie silt loam, 0 to 2 percent slopes, occasionally flooded

Component: Haynie (80%)

The Haynie, occasionally flooded component makes up 80 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of calcareous silty alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is very high. Shrink-swell potential is low. This soil is occasionally flooded. It is not ponded. A seasonal zone of water saturation is at 60 inches during January, February, March, April, May, June, July, August, September, October, November, December. Organic matter content in the surface horizon is about 2 percent. This component is in the F107BY016MO Loamy Floodplain Forest Quercus Bicolor-populus Deltoides/glyceria Striata-ranunculus Hispidus Swamp White Oak-eastern Cottonwood/fowl Mannagrass-bristly Buttercup ecological site. Nonirrigated land capability classification is 2w. Irrigated land capability classification is 2w. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 18 percent. There are no saline horizons within 30 inches of the soil surface.

Component: Grable (10%)

Generated brief soil descriptions are created for major soil components. The Grable, occasionally flooded soil is a minor component.

Component: Lossing (5%)

Generated brief soil descriptions are created for major soil components. The Lossing, occasionally flooded soil is a minor component.

Component: Albaton (5%)

Generated brief soil descriptions are created for major soil components. The Albaton, occasionally flooded soil is a minor component.

Map Unit 1146 (1.28%)

Map Unit Name: Onawa silty clay, 0 to 2 percent slopes, occasionally flooded

Bedrock Depth - Min: null
Watertable Depth - Annual Min: 30cm

Drainage Class - Dominant: Somewhat poorly drained

Hydrologic Group - Dominant: D - Soils in this group have high runoff potential when thoroughly wet. Water

movement through the soil is restricted or very restricted.

Order No: 24041700273p

Major components are printed below

Onawa(75%)

horizon Ap1,Ap2(0cm to 22cm)
Silty clay
horizon Cg1,Cg4(22cm to 91cm)
Silty clay

horizon 2Cg5,2Cg8(91cm to 203cm)

Silt loam

Component Description:

Minor map unit components are excluded from this report.

Map Unit: 1146 - Onawa silty clay, 0 to 2 percent slopes, occasionally flooded

Component: Onawa (75%)

The Onawa, occasionally flooded component makes up 75 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of clayey alluvium over silty alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is somewhat poorly drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is moderate. This soil is occasionally flooded. It is not ponded. A seasonal zone of water saturation is at 12 inches during January, February, March, April, May, June, July, November, December. Organic matter content in the surface horizon is about 3 percent. This component is in the F107BY017MO Clayey Floodplain Forest Ulmus Americana/toxicodendron Radicans/elymus Virginicus-geum Canadense American Elm/eastern Poison Ivy/virginia Wildrye-white Avens ecological site. Nonirrigated land capability classification is 2w. Irrigated land capability classification is 2w. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 18 percent.

Component: Onawa (10%)

Generated brief soil descriptions are created for major soil components. The Onawa, silt loam, occasionally flooded soil is a minor component.

Component: Morconick (5%)

Generated brief soil descriptions are created for major soil components. The Morconick, occasionally flooded soil is a minor component.

Component: Grable (5%)

Generated brief soil descriptions are created for major soil components. The Grable, occasionally flooded soil is a minor component.

Component: Owego (5%)

Generated brief soil descriptions are created for major soil components. The Owego, rarely flooded soil is a minor component.

Map Unit 1238 (4.22%)

Map Unit Name: Sarpy-Morconick complex, 0 to 2 percent slopes, occasionally flooded

Bedrock Depth - Min: null
Watertable Depth - Annual Min: null

Drainage Class - Dominant: Excessively drained

Hydrologic Group - Dominant: A - Soils in this group have low runoff potential when thoroughly wet. Water is

transmitted freely through the soil.

Major components are printed below

Sarpy(60%)

horizon Ap(0cm to 15cm)

horizon C(15cm to 152cm)

Loamy fine sand

Fine sand

Morconick(20%)

horizon Ap(0cm to 18cm) Fine sandy loam

horizon C1(18cm to 33cm) Loam horizon 2C2,2C8(33cm to 203cm) Fine sand

Component Description:

Minor map unit components are excluded from this report.

Map Unit: 1238 - Sarpy-Morconick complex, 0 to 2 percent slopes, occasionally flooded

Component: Sarpy (60%)

The Sarpy, occasionally flooded component makes up 60 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of sandy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is excessively drained. Water movement in the most restrictive layer is high. Available water to a depth of

60 inches (or restricted depth) is low. Shrink-swell potential is low. This soil is occasionally flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. This component is in the F107BY015MO Sandy/loamy Floodplain Forest Populus Deltoides-platanus Occidentalis/salix Exigua-salix Amygdaloides/c. Americana-r. Laciniata Eastern Cottonwood-am. Sycamore/sandbar Willow-peachleaf Willow/am. Bellflower-cutleaf Coneflower ecological site. Nonirrigated land capability classification is 4s. Irrigated land capability classification is 3s. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 2 percent.

Component: Morconick (20%)

The Morconick, occasionally flooded component makes up 20 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of loamy alluvium over sandy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is low. Shrink-swell potential is low. This soil is occasionally flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This component is in the F107BY016MO Loamy Floodplain Forest Quercus Bicolor-populus Deltoides/glyceria Striataranunculus Hispidus Swamp White Oak-eastern Cottonwood/fowl Mannagrass-bristly Buttercup ecological site. Nonirrigated land capability classification is 3s. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 3 percent.

Component: Percival (12%)

Generated brief soil descriptions are created for major soil components. The Percival, occasionally flooded soil is a minor component.

Component: Modale (5%)

Generated brief soil descriptions are created for major soil components. The Modale, occasionally flooded soil is a minor component.

Component: Haynie (3%)

Generated brief soil descriptions are created for major soil components. The Haynie, occasionally flooded soil is a minor component.

Map Unit 137 (38.12%)

Map Unit Name: Haynie silt loam, deep loess, 0 to 2 percent slopes, rarely flooded

Bedrock Depth - Min: null
Watertable Depth - Annual Min: 152cm

Drainage Class - Dominant: Moderately well drained

Hydrologic Group - Dominant: B - Soils in this group have moderately low runoff potential when thoroughly

wet. Water transmission through the soil is unimpeded.

Major components are printed below

Haynie(90%)

horizon Ap(0cm to 18cm) Silt loam horizon C(18cm to 152cm) Silt loam

Component Description:

Minor map unit components are excluded from this report.

Map Unit: 137 - Haynie silt loam, deep loess, 0 to 2 percent slopes, rarely flooded

Component: Haynie (90%)

The Haynie, rarely flooded component makes up 90 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of calcareous silty alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is very high. Shrink-swell potential is low. This soil is rarely flooded. It is not ponded. A seasonal zone of water saturation is at 60 inches during January, February, March, April, May, June, July, August, September, October, November, December. Organic matter content in the surface horizon is about 2 percent. This component is in the F107BY016MO Loamy Floodplain Forest Quercus Bicolor-populus Deltoides/glyceria Striata-ranunculus Hispidus Swamp White Oak-eastern Cottonwood/fowl Mannagrass-bristly Buttercup ecological site. Nonirrigated land capability classification is 1. Irrigated land capability classification is 1. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 18 percent. There are no saline horizons within 30 inches of the soil surface.

Component: Percival (5%)

Generated brief soil descriptions are created for major soil components. The Percival, rarely flooded soil is a minor component.

Component: Sarpy (5%)

Generated brief soil descriptions are created for major soil components. The Sarpy, rarely flooded soil is a minor component.

Map Unit 1513 (0.88%)

Map Unit Name: Grable-Morconick complex, 0 to 2 percent slopes, occasionally flooded

Bedrock Depth - Min: null
Watertable Depth - Annual Min: null

Drainage Class - Dominant: Well drained

Hydrologic Group - Dominant: B - Soils in this group have moderately low runoff potential when thoroughly

wet. Water transmission through the soil is unimpeded.

Major components are printed below

Grable(70%)

horizon Ap(0cm to 15cm)

horizon C1(15cm to 58cm)

Silt loam

horizon 2C2(58cm to 152cm)

Fine sand

Morconick(20%)

horizon Ap(0cm to 18cm) Fine sandy loam

horizon C1(18cm to 33cm) Loam horizon 2C2,2C8(33cm to 203cm) Fine sand

Component Description:

Minor map unit components are excluded from this report.

Map Unit: 1513 - Grable-Morconick complex, 0 to 2 percent slopes, occasionally flooded

Component: Grable (70%)

The Grable, occasionally flooded component makes up 70 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of silty alluvium over sandy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is occasionally flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This component is in the F107BY016MO Loamy Floodplain Forest Quercus Bicolor-populus Deltoides/glyceria Striata-ranunculus Hispidus Swamp White Oak-eastern Cottonwood/fowl Mannagrass-bristly Buttercup ecological site. Nonirrigated land capability classification is 2s. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 18 percent.

Component: Morconick (20%)

The Morconick, occasionally flooded component makes up 20 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of loamy alluvium over sandy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is low. Shrink-swell potential is low. This soil is occasionally flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This component is in the F107BY016MO Loamy Floodplain Forest Quercus Bicolor-populus Deltoides/glyceria Striataranunculus Hispidus Swamp White Oak-eastern Cottonwood/fowl Mannagrass-bristly Buttercup ecological site. Nonirrigated land capability classification is 3s. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 3 percent.

Component: Percival (10%)

Generated brief soil descriptions are created for major soil components. The Percival, occasionally flooded soil is a minor component.

Order No: 24041700273p

Map Unit 1524 (2.15%)

Map Unit Name: Morconick fine sandy loam, 0 to 2 percent slopes, occasionally flooded

Bedrock Depth - Min: null
Watertable Depth - Annual Min: null

Drainage Class - Dominant: Well drained

Hydrologic Group - Dominant: B - Soils in this group have moderately low runoff potential when thoroughly

wet. Water transmission through the soil is unimpeded.

Major components are printed below

Morconick(85%)

horizon Ap(0cm to 18cm) Fine sandy loam

horizon C1(18cm to 33cm) Loam horizon 2C2,2C8(33cm to 203cm) Fine sand

Component Description:

Minor map unit components are excluded from this report.

Map Unit: 1524 - Morconick fine sandy loam, 0 to 2 percent slopes, occasionally flooded

Component: Morconick (85%)

The Morconick, occasionally flooded component makes up 85 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of loamy alluvium over sandy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is low. Shrink-swell potential is low. This soil is occasionally flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This component is in the F107BY016MO Loamy Floodplain Forest Quercus Bicolor-populus Deltoides/glyceria Striataranunculus Hispidus Swamp White Oak-eastern Cottonwood/fowl Mannagrass-bristly Buttercup ecological site. Nonirrigated land capability classification is 3s. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 3 percent.

Component: Percival (10%)

Generated brief soil descriptions are created for major soil components. The Percival, occasionally flooded soil is a minor component.

Component: Albaton (5%)

Generated brief soil descriptions are created for major soil components. The Albaton, undrained, occasionally flooded soil is a minor component.

Map Unit 237 (2.76%)

Map Unit Name: Sarpy loamy fine sand, 0 to 2 percent slopes, rarely flooded

Bedrock Depth - Min: null
Watertable Depth - Annual Min: null

Drainage Class - Dominant: Excessively drained

Hydrologic Group - Dominant: A - Soils in this group have low runoff potential when thoroughly wet. Water is

transmitted freely through the soil.

Major components are printed below

Sarpy(95%)

horizon Ap(0cm to 15cm)

Loamy fine sand
horizon C(15cm to 152cm)

Loamy fine sand

Component Description:

Minor map unit components are excluded from this report.

Map Unit: 237 - Sarpy loamy fine sand, 0 to 2 percent slopes, rarely flooded

Component: Sarpy (95%)

The Sarpy, rarely flooded component makes up 95 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of sandy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is excessively drained. Water movement in the most restrictive layer is high. Available water to a depth of 60 inches (or restricted depth) is low. Shrink-swell potential is low. This soil is rarely flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. This component is in the F107BY015MO Sandy/loamy Floodplain Forest Populus Deltoides-platanus Occidentalis/salix Exigua-salix Amygdaloides/c. Americana-r. Laciniata Eastern Cottonwood-am. Sycamore/sandbar Willow-peachleaf Willow/am. Bellflower-cutleaf Coneflower ecological site. Nonirrigated land capability classification is 4s. Irrigated land capability classification is 3s. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 8 percent.

Component: Haynie (5%)

Generated brief soil descriptions are created for major soil components. The Haynie, rarely flooded soil is a minor component.

Map Unit 237B (0.87%)

Map Unit Name: Sarpy loamy fine sand, 2 to 5 percent slopes, rarely flooded

Bedrock Depth - Min: null
Watertable Depth - Annual Min: null

Drainage Class - Dominant: Excessively drained

Hydrologic Group - Dominant: A - Soils in this group have low runoff potential when thoroughly wet. Water is

transmitted freely through the soil.

Major components are printed below

Sarpy(80%)

horizon Ap(0cm to 15cm)
Loamy fine sand
horizon C(15cm to 152cm)
Fine sand

Component Description:

Minor map unit components are excluded from this report.

Map Unit: 237B - Sarpy loamy fine sand, 2 to 5 percent slopes, rarely flooded

Component: Sarpy (80%)

The Sarpy, rarely flooded component makes up 80 percent of the map unit. Slopes are 2 to 5 percent. This component is on flood plains on river valleys. The parent material consists of sandy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is excessively drained. Water movement in the most restrictive layer is high. Available water to a depth of 60 inches (or restricted depth) is low. Shrink-swell potential is low. This soil is rarely flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 1 percent. This component is in the F107BY015MO Sandy/loamy Floodplain Forest Populus Deltoides-platanus Occidentalis/salix Exigua-salix Amygdaloides/c. Americana-r. Laciniata Eastern Cottonwood-am. Sycamore/sandbar Willow-peachleaf Willow/am. Bellflower-cutleaf Coneflower ecological site. Nonirrigated land capability classification is 4s. Irrigated land capability classification is 3s. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 8 percent.

Component: Onawa (10%)

Generated brief soil descriptions are created for major soil components. The Onawa, rarely flooded soil is a minor component.

Component: Ticonic (10%)

Generated brief soil descriptions are created for major soil components. The Ticonic, rarely flooded soil is a minor component.

Map Unit 3146 (0.51%)

Map Unit Name: Onawa-Albaton complex, 0 to 2 percent slopes, rarely flooded

Bedrock Depth - Min: null
Watertable Depth - Annual Min: 0cm

Drainage Class - Dominant: Somewhat poorly drained

Hydrologic Group - Dominant: D - Soils in this group have high runoff potential when thoroughly wet. Water

movement through the soil is restricted or very restricted.

Order No: 24041700273p

Major components are printed below

Onawa(55%)

horizon Ap1,Ap2(0cm to 22cm)
Silty clay
horizon Cg1,Cg4(22cm to 91cm)
Silty clay
horizon 2Cg5,2Cg8(91cm to 203cm)
Silt loam

Albaton(25%)

horizon Ap(0cm to 18cm) Silty clay horizon Cg(18cm to 152cm) Silty clay

Component Description:

Minor map unit components are excluded from this report.

Map Unit: 3146 - Onawa-Albaton complex, 0 to 2 percent slopes, rarely flooded

Component: Onawa (55%)

The Onawa, rarely flooded component makes up 55 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of clayey alluvium over silty alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is somewhat poorly drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is moderate. This soil is rarely flooded. It is not ponded. A seasonal zone of water saturation is at 12 inches during January, February, March, April, May, June, July, November, December. Organic matter content in the surface horizon is about 3 percent. This component is in the F107BY017MO Clayey Floodplain Forest Ulmus Americana/toxicodendron Radicans/elymus Virginicus-geum Canadense American Elm/eastern Poison lvy/virginia Wildrye-white Avens ecological site. Nonirrigated land capability classification is 2w. Irrigated land capability classification is 2w. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 18 percent.

Component: Albaton (25%)

The Albaton, rarely flooded component makes up 25 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of Clayey alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is poorly drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is very high. This soil is rarely flooded. It is not ponded. A seasonal zone of water saturation is at 0 inches during January, February, March, April, May, June, July, November, December. Organic matter content in the surface horizon is about 3 percent. This component is in the F107BY017MO Clayey Floodplain Forest Ulmus Americana/toxicodendron Radicans/elymus Virginicus-geum Canadense American Elm/eastern Poison Ivy/virginia Wildrye-white Avens ecological site. Nonirrigated land capability classification is 3w. Irrigated land capability classification is 3w. This soil meets hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 18 percent.

Component: Modale (10%)

Generated brief soil descriptions are created for major soil components. The Modale, rarely flooded soil is a minor component.

Component: Grable (5%)

Generated brief soil descriptions are created for major soil components. The Grable, rarely flooded soil is a minor component.

Component: Onawa (5%)

Generated brief soil descriptions are created for major soil components. The Onawa, silt loam, rarely flooded soil is a minor component.

Map Unit 3513 (1.04%)

Map Unit Name: Grable-Morconick complex, 0 to 2 percent slopes, rarely flooded

Bedrock Depth - Min: null
Watertable Depth - Annual Min: null

Drainage Class - Dominant: Well drained

Hydrologic Group - Dominant: B - Soils in this group have moderately low runoff potential when thoroughly

wet. Water transmission through the soil is unimpeded.

Major components are printed below

Grable(65%)

horizon Ap(0cm to 15cm)

horizon C1(15cm to 58cm)

horizon 2C2(58cm to 152cm)

Silt loam

Fine sand

Morconick(20%)

horizon Ap(0cm to 18cm) Fine sandy loam

horizon C1(18cm to 33cm) Loam horizon 2C2,2C8(33cm to 203cm) Fine sand

Component Description:

Minor map unit components are excluded from this report.

Map Unit: 3513 - Grable-Morconick complex, 0 to 2 percent slopes, rarely flooded

Component: Grable (65%)

The Grable, rarely flooded component makes up 65 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of silty alluvium over sandy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is low. This soil is rarely flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This component is in the F107BY016MO Loamy Floodplain Forest Quercus Bicolor-populus Deltoides/glyceria Striataranunculus Hispidus Swamp White Oak-eastern Cottonwood/fowl Mannagrass-bristly Buttercup ecological site. Nonirrigated land capability classification is 2s. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 18 percent.

Component: Morconick (20%)

The Morconick, rarely flooded component makes up 20 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of loamy alluvium over sandy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is low. Shrink-swell potential is low. This soil is rarely flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This component is in the F107BY016MO Loamy Floodplain Forest Quercus Bicolor-populus Deltoides/glyceria Striata-ranunculus Hispidus Swamp White Oak-eastern Cottonwood/fowl Mannagrass-bristly Buttercup ecological site. Nonirrigated land capability classification is 3s. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 3 percent.

Component: Blake (5%)

Generated brief soil descriptions are created for major soil components. The Blake, rarely flooded soil is a minor component.

Component: Modale (5%)

Generated brief soil descriptions are created for major soil components. The Modale, loam, rarely flooded soil is a minor component.

Component: Percival (5%)

Generated brief soil descriptions are created for major soil components. The Percival, rarely flooded soil is a minor component.

Map Unit 3549 (0.73%)

Map Unit Name: Modale complex, 0 to 2 percent slopes, rarely flooded

Bedrock Depth - Min: null
Watertable Depth - Annual Min: 30cm

Drainage Class - Dominant: Somewhat poorly drained

Hydrologic Group - Dominant: D - Soils in this group have high runoff potential when thoroughly wet. Water

movement through the soil is restricted or very restricted.

Order No: 24041700273p

Major components are printed below

Modale(35%)

horizon Ap(0cm to 18cm)

horizon Cg(18cm to 61cm)

Silty clay loam

Silt loam

horizon 2Cg,3Cg3(61cm to 152cm)

Silty clay

Modale(30%)

horizon Ap(0cm to 18cm)

horizon C1,C3(18cm to 61cm)

Silt loam

horizon 2Cg,3Cg3(61cm to 152cm)

Clay

Component Description:

Minor map unit components are excluded from this report.

Map Unit: 3549 - Modale complex, 0 to 2 percent slopes, rarely flooded

Component: Modale (35%)

The Modale, silty clay loam, rarely flooded component makes up 35 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of silty alluvium over clayey alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is somewhat poorly drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is moderate. This soil is rarely flooded. It is not ponded. A seasonal zone of water saturation is at 24 inches during January, February, March, April, May, June, July, November, December. Organic matter content in the surface horizon is about 2 percent. This component is in the

F107BY016MO Loamy Floodplain Forest Quercus Bicolor-populus Deltoides/glyceria Striata-ranunculus Hispidus Swamp White Oakeastern Cottonwood/fowl Mannagrass-bristly Buttercup ecological site. Nonirrigated land capability classification is 1. Irrigated land capability classification is 1 This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 18 percent.

Component: Modale (30%)

The Modale, silt loam, rarely flooded component makes up 30 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of silty alluvium over clayey alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is somewhat poorly drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is high. This soil is rarely flooded. It is not ponded. A seasonal zone of water saturation is at 12 inches during January, February, March, April, May, June, July, November, December. Organic matter content in the surface horizon is about 2 percent. This component is in the F107BY016MO Loamy Floodplain Forest Quercus Bicolor-populus Deltoides/glyceria Striata-ranunculus Hispidus Swamp White Oak-eastern Cottonwood/fowl Mannagrass-bristly Buttercup ecological site. Nonirrigated land capability classification is 1. Irrigated land capability classification is 1. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 18 percent.

Component: Onawa (15%)

Generated brief soil descriptions are created for major soil components. The Onawa, rarely flooded soil is a minor component.

Component: Owego (10%)

Generated brief soil descriptions are created for major soil components. The Owego, rarely flooded soil is a minor component.

Component: Blake (5%)

Generated brief soil descriptions are created for major soil components. The Blake, rarely flooded soil is a minor component.

Component: Cooper (2%)

Generated brief soil descriptions are created for major soil components. The Cooper, rarely flooded soil is a minor component.

Component: Haynie (2%)

Generated brief soil descriptions are created for major soil components. The Haynie, rarely flooded soil is a minor component.

Component: Morconick (1%)

Generated brief soil descriptions are created for major soil components. The Morconick, rarely flooded soil is a minor component.

Map Unit 515 (0.99%)

Map Unit Name: Percival silty clay, 0 to 2 percent slopes, rarely flooded

Bedrock Depth - Min: null
Watertable Depth - Annual Min: 30cm

Drainage Class - Dominant: Somewhat poorly drained

Hydrologic Group - Dominant: D - Soils in this group have high runoff potential when thoroughly wet. Water

movement through the soil is restricted or very restricted.

Order No: 24041700273p

Major components are printed below

Percival(75%)

horizon Ap(0cm to 20cm)
Silty clay
horizon Cg(20cm to 61cm)
Silty clay

horizon 2Cg(61cm to 152cm) Stratified fine sand to loamy fine sand

Component Description:

Minor map unit components are excluded from this report.

Map Unit: 515 - Percival silty clay, 0 to 2 percent slopes, rarely flooded

Component: Percival (75%)

The Percival, rarely flooded component makes up 75 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of clayey alluvium over sandy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is somewhat poorly drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is low. Shrink-swell potential is moderate. This soil is rarely flooded. It is not ponded. A seasonal zone of water saturation is at 12 inches during January, February, March, April, May, June, July, November,

December. Organic matter content in the surface horizon is about 2 percent. This component is in the F107BY017MO Clayey Floodplain Forest Ulmus Americana/toxicodendron Radicans/elymus Virginicus-geum Canadense American Elm/eastern Poison Ivy/virginia Wildrye-white Avens ecological site. Nonirrigated land capability classification is 2w. Irrigated land capability classification is 2w. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 13 percent.

Component: Morconick (10%)

Generated brief soil descriptions are created for major soil components. The Morconick, rarely flooded soil is a minor component.

Component: Sarpy (10%)

Generated brief soil descriptions are created for major soil components. The Sarpy, rarely flooded soil is a minor component.

Component: Albaton (5%)

Generated brief soil descriptions are created for major soil components. The Albaton, rarely flooded soil is a minor component.

Map Unit 518 (7.08%)

Map Unit Name: Morconick fine sandy loam, 0 to 2 percent slopes, rarely flooded

Bedrock Depth - Min: null
Watertable Depth - Annual Min: null

Drainage Class - Dominant: Well drained

Hydrologic Group - Dominant:

B - Soils in this group have moderately low runoff potential when thoroughly

wet. Water transmission through the soil is unimpeded.

Major components are printed below

Morconick(100%)

horizon Ap(0cm to 18cm) Fine sandy loam

horizon C1(18cm to 33cm) Loam horizon 2C2,2C8(33cm to 203cm) Fine sand

Component Description:

Minor map unit components are excluded from this report.

Map Unit: 518 - Morconick fine sandy loam, 0 to 2 percent slopes, rarely flooded

Component: Morconick (100%)

The Morconick, rarely flooded component makes up 100 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of loamy alluvium over sandy alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is low. Shrink-swell potential is low. This soil is rarely flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This component is in the F107BY016MO Loamy Floodplain Forest Quercus Bicolor-populus Deltoides/glyceria Striataranunculus Hispidus Swamp White Oak-eastern Cottonwood/fowl Mannagrass-bristly Buttercup ecological site. Nonirrigated land capability classification is 3s. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 3 percent.

Map Unit 549 (0.7%)

Map Unit Name: Modale complex, 0 to 2 percent slopes, occasionally flooded

Bedrock Depth - Min: null
Watertable Depth - Annual Min: 61cm

Drainage Class - Dominant: Somewhat poorly drained

Hydrologic Group - Dominant: C - Soils in this group have moderately high runoff potential when thoroughly

wet. Water transmission through the soil is somewhat restricted.

Order No: 24041700273p

Major components are printed below

Modale(70%)

horizon Ap(0cm to 18cm)
Silt loam
horizon C1,C3(18cm to 61cm)
Silt loam

horizon 2Cg,3Cg3(61cm to 152cm)

Modale(30%)

Silty clay

horizon Ap(0cm to 18cm) horizon Cg(18cm to 61cm) horizon 2Cg(61cm to 152cm)

Silt loam Silty clay

Silty clay loam

Component Description:

Minor map unit components are excluded from this report.

Map Unit: 549 - Modale complex, 0 to 2 percent slopes, occasionally flooded

Component: Modale (70%)

The Modale, silt loam, occasionally flooded component makes up 70 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of silty alluvium over clayey alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is somewhat poorly drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is high. This soil is occasionally flooded. It is not ponded. A seasonal zone of water saturation is at 24 inches during January, February, March, April, May, June, July, November, December. Organic matter content in the surface horizon is about 2 percent. This component is in the F107BY016MO Loamy Floodplain Forest Quercus Bicolor-populus Deltoides/glyceria Striata-ranunculus Hispidus Swamp White Oakeastern Cottonwood/fowl Mannagrass-bristly Buttercup ecological site. Nonirrigated land capability classification is 1. Irrigated land capability classification is 1 This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 18 percent.

Component: Modale (30%)

The Modale, silty clay loam, occasionally flooded component makes up 30 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on river valleys. The parent material consists of silty alluvium over clayey alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is somewhat poorly drained. Water movement in the most restrictive layer is low. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is moderate. This soil is occasionally flooded. It is not ponded. A seasonal zone of water saturation is at 24 inches during January, February, March, April, May, June, July, November, December. Organic matter content in the surface horizon is about 2 percent. This component is in the F107BY016MO Loamy Floodplain Forest Quercus Bicolor-populus Deltoides/glyceria Striata-ranunculus Hispidus Swamp White Oak-eastern Cottonwood/fowl Mannagrass-bristly Buttercup ecological site. Nonirrigated land capability classification is 2s. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 18 percent.

Map Unit 6308 (2.15%)

Map Unit Name: Barney fine sandy loam, occasionally flooded

Bedrock Depth - Min: null
Watertable Depth - Annual Min: 23cm

Drainage Class - Dominant: Poorly drained

Hydrologic Group - Dominant: A/D - These soils have low runoff potential when drained and high runoff

potential when undrained.

Major components are printed below

Barney(100%)

horizon A(0cm to 15cm) Fine sandy loam horizon 2Cg(15cm to 152cm) Fine sand

Component Description:

Minor map unit components are excluded from this report.

Map Unit: 6308 - Barney fine sandy loam, occasionally flooded

Component: Barney (100%)

The Barney component makes up 100 percent of the map unit. Slopes are 0 to 2 percent. This component is on flood plains on valleys. The parent material consists of loamy alluvium over sandy and gravelly alluvium. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is poorly drained. Water movement in the most restrictive layer is high. Available water to a depth of 60 inches (or restricted depth) is low. Shrink-swell potential is low. This soil is occasionally flooded. It is not ponded. A seasonal zone of water saturation is at 9 inches during January, February, March, April, May, June, November, December. Organic matter content in the surface horizon is about 2 percent. Nonirrigated land capability classification is 5w. This soil meets hydric

criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 3 percent.

Map Unit 9999 (27.24%)

Map Unit Name: Water

No more attributes available for this map unit

Component Description:

Minor map unit components are excluded from this report.

Map Unit: 9999 - Water

Component: Water (100%)

Generated brief soil descriptions are created for major soil components. The Water is a miscellaneous area.

Map Unit W (9.07%)

Map Unit Name: Water

No more attributes available for this map unit

Component Description:

Minor map unit components are excluded from this report.

Map Unit: W - Water

Component: Water (100%)

Generated brief soil descriptions are created for major soil components. The Water is a miscellaneous area.

Wells and Additional Sources

Wells and Additional Sources Summary

Federal Sources

Map Key ID Distance (ft) Direction

No records found

Safe Drinking Water Information System (SDWIS)

Map Key ID Distance (ft) Direction

No records found

USGS National Water Information System

Map Key ID Distance (ft) Direction

No records found

State Sources

Oil and Gas Wells

Map Key ID Distance (ft) Direction

No records found

Public Water Supply Wells

Map Key ID Distance (ft) Direction

No records found

Water Well Database

Map Key	Well ID	Distance (ft)	Direction	
1	38785	1083.21	NW	
2	82378	1259.00	E	
2	2170871	1259.00	E	
3	33734	2178.76	SSW	
4	38783	2088.04	ENE	
5	38784	2337.65	N	
6	2693	2396.23	ENE	
6	2693	2396.23	ENE	
7	29479	2441.55	ENE	
7	29479	2441.55	ENE	
8	5378	3354.10	NNE	
8	5378	3354.10	NNE	
9	29354	3767.80	NE	
10	29355	3962.73	NE	
11	29353	4050.11	NE	
12	29352	4189.98	NE	
13	29351	4291.14	NE	

Water Well Database

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
1	NW	0.21	1,083.21	1,083.22	WATER WELLS
Well ID:	20	785	Object ID:	0	
			Object ID:	0	
Well Type:	IG	S Well Database	Map ID:	20458	
Well Type Abbrev:	GE	OU	County:	Woodbury	
Well Depth (Ft.):	10	0	Latitude:	42.4160604076	298
Elevation (Ft.):			Longitude:	-96.4009691837	7509
Layer:			Xcoord:	220167.0	
Completed date:	1/	/1976	Ycoord:	4701578.0	
Location: T88N		8N, R48W, 23, SW SE SE NW	Est Loc Accuracy:	Calc. +/- 230 ft.	
Well ID Source field: wnumber		umber			
Other Information: Bedrock Depth: 0 Well Type: Irriga			ation		
Owner Name: Oehlerking, Charles H.					
Well Doc Link: https://www.iihr.uiowa.edu/igs/geosam/well/38785/general-information					

Мар Кеу	Directi	on Distance (mi)	Distance (ft)	Elevation (ft)	DB	
2	E	0.24	1,259.00	1,089.44	WATER WELLS	
Well ID:		82378	Object ID:	0		
Well Type:		IGS Well Database	Map ID:	20782		
Well Type Abbrev:		GEOU	County:	Woodbury		
Well Depth (Ft.):		300	Latitude:	42.4119948559	606	
Elevation (Ft.):			Longitude:	-96.390493417	1557	
Layer:			Xcoord:	221011.0		
Completed date:		7/3/2014	Ycoord:	4701092.0		
Location:		T88N, R48W, 26, NE NE SE	Est Loc Accuracy:	Calc. +/- 470 ft.		
Well ID Source field: w		wnumber				
Other Information: Bedrock Depth: 10		Bedrock Depth: 105 Well Type	e: Private			
Owner Name: Oehlerking, Charles						
Well Doc Link: https://www.iihr.uiowa.edu/igs/geosam/well/82378/general-information						

Map Key	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
2	E	0.24	1,259.00	1,089.44	WATER WELLS
Well ID: Well Type:	2170 Priva	871 te well tracking system	Object ID: Map ID:	0 20781	
Well Type Abbrev:	PWT	S	County:	Woodbury	
Well Depth (Ft.):	300		Latitude:	42.4119960008	3523
Elevation (Ft.):			Longitude:	-96.390488993	7757
Layer:			Xcoord:	221011.369058	3
Completed date:	7/3/2	014	Ycoord:	4701092.11262	2

Location: T88N, R48W, S26 Est Loc Accuracy: nom. +/- 25m.

Well ID Source field: wellnmbr

Other Information: Status: Active Logged
Owner Name: OEHLERKING, CHARLES

Well Doc Link: https://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%

5ct2170871&reportName=WellPrintout

Мар Кеу	Direction	on Distanc	e (mi)	Distance (ft)	Elevation (ft)	DB
3	SSW	0.41		2,178.76	1,088.39	WATER WELLS
Well ID:	;	33734		Object ID:	0	
Well Type:	j	IGS Well Databas	se	Map ID:	21088	
Well Type Abbrev:	(GEOU		County:	Woodbury	
Well Depth (Ft.):	:	240		Latitude:	42.407365477	79511
Elevation (Ft.):				Longitude:	-96.40115504	68374
Layer:				Xcoord:	220113.0	
Completed date:	!	5/4/1993		Ycoord:	4700613.0	
Location:		T88N, R48W, 26,	SE SE NW	Est Loc Accuracy:	Calc. +/- 470 f	ft.
Well ID Source fiel	d: v	wnumber				
Other Information:	1	Bedrock Depth: 0	Well Type: Priva	te		
Owner Name:	Ĭ	Petrik, R.J.				

Map Key	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB

2,088.04

1,088.09

WATER WELLS

Order No: 24041700273p

https://www.iihr.uiowa.edu/igs/geosam/well/33734/general-information

				10	
Well ID:	38783)	Object ID:	^	
Well ID.	30/03)	Object iD.	U	

Well Type:IGS Well DatabaseMap ID:20611Well Type Abbrev:GEOUCounty:WoodburyWell Depth (Ft.):86Latitude:42.4152658075632

Elevation (Ft.): Longitude: -96.3891994030175

 Layer:
 Xcoord:
 221132.0

 Completed date:
 7/1/1968
 Ycoord:
 4701451.0

 Location:
 T88N, R48W, 24, SW SW SW
 Est Loc Accuracy:
 Calc. +/- 470 ft.

Well ID Source field: wnumber

ENE

Other Information: Bedrock Depth: 0 Well Type: Irrigation

0.40

Owner Name: Oehlerking, Charles H.

Well Doc Link: https://www.iihr.uiowa.edu/igs/geosam/well/38783/general-information

Map Key	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
5	N	0.44	2,337.65	1,085.13	WATER WELLS
Well ID: Well Type: Well Type Abbrev:		Vell Database	Object ID: Map ID: County:	0 20227 Woodbury	

Well Doc Link:

4

 Well Depth (Ft.):
 93
 Latitude:
 42.4195952050398

 Elevation (Ft.):
 Longitude:
 -96.3950353345881

 Layer:
 Xcoord:
 220671.0

 Completed date:
 1/1/1974
 Ycoord:
 4701951.0

 Location:
 T88N, R48W, 23, SE NW SE NE
 Est Loc Accuracy:
 Calc. +/- 230 ft.

Well ID Source field: wnumber

Other Information: Bedrock Depth: 0 Well Type: Irrigation

Owner Name: Oehlerking, Charles H.

Well Doc Link: https://www.iihr.uiowa.edu/igs/geosam/well/38784/general-information

DB Map Key Direction Distance (mi) Distance (ft) Elevation (ft) 6 **ENE** 0.45 2,396.23 1,091.03 WATER WELLS Well ID: 2693 0 Object ID: Well Type: Water Use Permit Wells Map ID: 20559 **WTRU** Well Type Abbrev: County: Woodbury Well Depth (Ft.): 86 Latitude: 42.4160399995964 Elevation (Ft.): Longitude: -96.388599995971 Xcoord: 221185.0 Layer: Completed date: 7/1/1968 4701535.0 Ycoord: Location: T88NR48WS24 Est Loc Accuracy: nom. +/-100m. Well ID Source field: wellID Other Information: PermitID= 2442 Well #2 Owner Name: Charles Oehlerking

Map Key	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
6	ENE	0.45	2,396.23	1,091.03	WATER WELLS
Well ID:	2693		Object ID:	19979	
Well Type:	Water Use Permit Wells		Map ID:	19979	

 Well Type Abbrev:
 WTRU
 County:
 Woodbury

 Well Depth (Ft.):
 86
 Latitude:
 42.4160486499495

 Elevation (Ft.):
 Longitude:
 -96.3886096870017

 Layer:
 Xcoord:
 221184.0

 Completed date:
 7/1/1968
 Ycoord:
 4701536.0

 Location:
 T88N, R48, S24, SW, SW
 Est Loc Accuracy:
 nom. +/-50m.

Well ID Source field: wellID

Other Information: PermitID: 2442 Well #2
Owner Name: Charles Oehlerking

Well Doc Link: http://programs.iowadnr.gov/wateruse/

Map Key	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
7	ENE	0.46	2,441.55	1,088.14	WATER WELLS

Order No: 24041700273p

Well Doc Link:

Well ID:29479Object ID:0Well Type:Water Use Permit WellsMap ID:20610Well Type Abbrev:WTRUCounty:Woodbury

 Well Depth (Ft.):
 100
 Latitude:
 42.4154299996121

 Elevation (Ft.):
 Longitude:
 -96.387720000058

Layer: Xcoord: -90.3877200000

Completed date: Ycoord: 4701464.0

Location: T88NR48WS24 Est Loc Accuracy: nom. +/-100m.

Well ID Source field: wellID

Other Information: PermitID= 2442 Well #3
Owner Name: Charles Oehlerking

Well Doc Link:

Map Key Direction Distance (mi) Distance (ft) Elevation (ft) DB7 **ENE** 0.46 2,441.55 1,088.14 WATER WELLS Well ID: 29479 Object ID: 20038 Water Use Permit Wells 20038 Well Type: Map ID: **WTRU** Well Type Abbrev: County: Woodbury

Well Depth (Ft.): 100 Latitude: 42.415435473787

Elevation (Ft.): Longitude: -96.3877259858907

Layer: Xcoord: 221254.0

Completed date: Ycoord: 4701465.0
Location: T88N, R48, S24, SW, SW Est Loc Accuracy: nom. +/-50m.

Well ID Source field: wellID

Other Information: PermitID: 2442 Well #3
Owner Name: Charles Oehlerking

Well Doc Link: http://programs.iowadnr.gov/wateruse/

DB Map Key Direction Distance (mi) Distance (ft) Elevation (ft) 8 NNE 0.64 3,354.10 1.085.15 WATER WELLS Well ID: 5378 Object ID: 19671 Well Type: Water Use Permit Wells 19671 Map ID: **WTRU** Well Type Abbrev: County: Woodbury Well Depth (Ft.): 100 Latitude: 42.4204866139

 Well Depth (Ft.):
 100
 Latitude:
 42.4204866139

 Elevation (Ft.):
 Longitude:
 -96.3895659568745

 Layer:
 Xcoord:
 221125.0

 Completed date:
 Ycoord:
 4702032.0

Location: T88N, R48, S23, S, Est Loc Accuracy: nom. +/-50m.

Well ID Source field: wellID

Other Information: PermitID: 2442 well #1
Owner Name: Charles Oehlerking

Well Doc Link: http://programs.iowadnr.gov/wateruse/

Map Key Direction Distance (mi) Distance (ft) Elevation (ft) DB

8 NNE 0.64 3,354.10 1,085.15 WATER WELLS

Well ID: 5378 Object ID: 0 Well Type: Water Use Permit Wells Map ID: 20207

Well Type Abbrev: WTRU County: Woodbury

Well Depth (Ft.): 100 Latitude: 42.4204799998915 Elevation (Ft.): Longitude: -96.3895600000556

Xcoord: Layer: 221125.0 Ycoord: Completed date: 4702031.0 T88NR48WS23 Location: Est Loc Accuracy: nom. +/-100m.

Well ID Source field: wellID

Other Information: PermitID= 2442 well #1 Owner Name: Charles Oehlerking

Well Doc Link:

Map Key Direction Distance (mi) Distance (ft) Elevation (ft) DB 9 NE 0.71 3.767.80 1.088.62 WATER WELLS Well ID: 29354 19703 Object ID: 19703 Well Type: Water Use Permit Wells Map ID: WTRU Well Type Abbrev: County: Woodbury Well Depth (Ft.): Latitude: 42.4200643048334 Elevation (Ft.): Longitude: -96.386796593449 Xcoord: 221351.0 Layer: Completed date: Ycoord: 4701976.0 Location: T88N, R48, S24, SW, NW nom. +/-100m. Est Loc Accuracy: Well ID Source field: wellID Other Information: PermitID: 97-16-016 Dewatering Well #4

Owner Name: LIEBER CONSTRUCTION INC (JOE WURSCHER)

Well Doc Link: http://programs.iowadnr.gov/wateruse/

Direction Distance (ft) Elevation (ft) DB Map Key Distance (mi) 10 NE 0.75 3,962.73 1.083.09 WATER WELLS 29355 19662 Well ID: Object ID: Well Type: Water Use Permit Wells Map ID: 19662 Well Type Abbrev: **WTRU** County: Woodbury Well Depth (Ft.): Latitude: 42.4210464121942

Order No: 24041700273p

Elevation (Ft.): Longitude: -96.3870804214786

Xcoord: 221332.0 Layer: Ycoord: 4702086.0 Completed date: Location: T88N, R48, S24, SW, NW Est Loc Accuracy: nom. +/-100m.

Well ID Source field: wellID

Other Information: PermitID: 97-16-016 Dewatering Well #5

Owner Name: LIEBER CONSTRUCTION INC (JOE WURSCHER)

Well Doc Link: http://programs.iowadnr.gov/wateruse/

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB		
11	NE	0.77	4,050.11	1,087.64	WATER WELLS		
Well ID:	2935		Object ID:	19696			
Well Type: Well Type Abbrev:		r Use Permit Wells U	Map ID: County:	19696 Woodbury			
Well Depth (Ft.):			Latitude:	42.4203832120	713		
Elevation (Ft.):			Longitude:	-96.3857564543	3849		
Layer:			Xcoord:	221438.0			
Completed date:			Ycoord:	4702008.0			
Location:	188T	I, R48, S24, SW, NW	Est Loc Accuracy:	nom. +/-100m.			
Well ID Source field	d: wellli)					
Other Information:	Perm	PermitID: 97-16-016 Dewatering Well #3					
Owner Name:	LIEB	LIEBER CONSTRUCTION INC (JOE WURSCHER)					
Well Doc Link:	http:/	http://programs.iowadnr.gov/wateruse/					

Мар Кеу	Direction	n Distance (mi)	Distance (ft)	Elevation (ft)	DB	
12	NE	0.79	4,189.98	1,088.00	WATER WELLS	
Well ID:	20	9352	Object ID:	19668		
		St. Les on two Marin Prince Sections (1999)	Object ID:	W. 1000-00-100		
Well Type:	-	/ater Use Permit Wells	Map ID:	19668		
Well Type Abbrev:	V	/TRU	County:	Woodbury		
Well Depth (Ft.):			Latitude:	42.4210625245	5038	
Elevation (Ft.):	Elevation (Ft.):		Longitude:	-96.3859267306291		
Layer:			Xcoord:	221427.0		
Completed date:			Ycoord:	4702084.0		
Location:	T	88N, R48, S24, SW, NW	Est Loc Accuracy:	nom. +/-100m.		
Well ID Source field	d: w	elIID				
Other Information:	Р	PermitID: 97-16-016 Dewatering Well #2				
Owner Name:	LI	LIEBER CONSTRUCTION INC (JOE WURSCHER)				
Well Doc Link:	ht	http://programs.iowadnr.gov/wateruse/				

Map Key	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB	
13	NE	0.81	4,291.14	1,087.66	WATER WELLS	
Well ID:	29351		Object ID:	19654	19654	
Well Type:	Water Use Permit Wells		Map ID:	19654	19654	
Well Type Abbrev:	rpe Abbrev: WTRU		County:	Woodbury	Woodbury	
Well Depth (Ft.):	Well Depth (Ft.):		Latitude:	42.4212940980121		
Elevation (Ft.):		Longitude:	-96.3857082921953			
Layer:		Xcoord:	221446.0			
Completed date:			Ycoord:	4702109.0		
Location:	T88N	, R48, S24, SW, NW	Est Loc Accuracy:	nom. +/-100m.		

Well ID Source field: wellID

Other Information: PermitID: 97-16-016 Dewatering Well #1

Owner Name: LIEBER CONSTRUCTION INC (JOE WURSCHER)

Well Doc Link: http://programs.iowadnr.gov/wateruse/

Radon Information

This section lists any relevant radon information found for the target property.

No Radon Zone Level records found for the project property or surrounding properties.

- Zone 1: Counties with predicted average indoor radon screening levels greater than 4 pCi/L
- Zone 2: Counties with predicted average indoor radon screening levels from 2 to 4 pCi/L
- Zone 3: Counties with predicted average indoor radon screening levels less than 2 pCi/L

No Indoor Radon Data records found for the project property or surrounding properties.

Federal Sources

FEMA National Flood Hazard Layer

FEMA FLOOD

The National Flood Hazard Layer (NFHL) data incorporates Flood Insurance Rate Map (FIRM) databases published by the Federal Emergency Management Agency (FEMA), and any Letters Of Map Revision (LOMRs) that have been issued against those databases since their publication date. The FIRM Database is the digital, geospatial version of the flood hazard information shown on the published paper FIRMs. The FIRM Database depicts flood risk information and supporting data used to develop the risk data. The FIRM Database is derived from Flood Insurance Studies (FISs), previously published FIRMs, flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available.

Indoor Radon Data INDOOR RADON

Indoor radon measurements tracked by the Environmental Protection Agency(EPA) and the State Residential Radon Survey.

Public Water Systems Violations and Enforcement Data

PWSV

This list of drinking water violations and enforcement actions is sourced from the U.S Environmental Protection Agency's (EPA) Enforcement and Compliance History Online (ECHO) system that incorporates Public Water Systems data from EPA's Safe Drinking Water Information System (SDWIS) database, as part of the national download of Safe Drinking Water Act (SDWA) data. SDWIS contains information on public water systems from the Public Water System Supervision (PWSS) Program, including monitoring, enforcement, and violation data related to requirements established by the SWDA. Address information provided in SWDIS may correspond either with the physical location of the water system, or with a contact address.

RADON ZONE RADON ZONE

Areas showing the level of Radon Zones (level 1, 2 or 3) by county. This data is maintained by the Environmental Protection Agency (EPA).

Safe Drinking Water Information System (SDWIS)

SDWIS

This national download of Safe Drinking Water Act (SDWA) data is sourced from the U.S Environmental Protection Agency's (EPA) Enforcement and Compliance History Online (ECHO) system that incorporates Public Water Systems data from EPA's Safe Drinking Water Information System (SDWIS) database. SDWIS contains information on public water systems from the Public Water System Supervision (PWSS) Program related to requirements established by the Safe Drinking Water Act (SDWA). Address information provided in SWDIS may correspond either with the physical location of the water system, or with a contact address.

Soil Survey Geographic database

SSURGO

The Soil Survey Geographic database (SSURGO) contains information about soil as collected by the National Cooperative Soil Survey at the Natural Resources Conservation Service (NRCS). Soil maps outline areas called map units. The map units are linked to soil properties in a database. Each map unit may contain one to three major components and some minor components.

U.S. Fish & Wildlife Service Wetland Data

US WETLAND

The U.S. Fish & Wildlife Service Wetland layer represents the approximate location and type of wetlands and deepwater habitats in the United States.

USGS Current Topo US TOPO

US Topo topographic maps are produced by the National Geospatial Program of the U.S. Geological Survey (USGS). The project was launched in late 2009, and the term "US Topo" refers specifically to quadrangle topographic maps published in 2009 and later.

<u>USGS Geology</u> US GEOLOGY

Seamless maps depicting geological information provided by the United States Geological Survey (USGS).

USGS National Water Information System

FED USGS

Order No: 24041700273p

The U.S. Geological Survey's (USGS) National Water Information System (NWIS) is the nation's principal repository of water resources data. The data includes comprehensive information of well-construction details, time-series data for gage height, streamflow, groundwater level, and precipitation and water use data. This NWIS database information is obtained through the Water Quality Data Portal (WQP). The WQP

Appendix

is a cooperative service sponsored by the USGS, the Environmental Protection Agency (EPA), and the National Water Quality Monitoring Council (NWQMC).

State Sources

Oil and Gas Wells OGW

As of IA state regulatory agencies, FracTracker Alliance - state of lowa confirmed not to have any active (drilled but not plugged) oil and gas wells.

Public Water Supply Wells PWSW

The Public Water Supply Wells (PWSW) data consist of all the community water supply wells in Iowa. This data was made available by Iowa Department of Natural Resources.

Water Well Database WATER WELLS

List of water well locations made available by the lowa Department of Natural Resources. This listing is a compilation of records from various well databases including the Geologic Sampling Points database, the Safe Drinking Water Information System (SDWIS) Wells database, and the Water Allocation Compliance and Online Permitting (WACOP) database.

Order No: 24041700273p

Liability Notice

Reliance on information in Report: The Physical Setting Report (PSR) DOES NOT replace a full Phase I Environmental Site Assessment but is solely intended to be used as a review of environmental databases and physical characteristics for the site or adjacent properties.

License for use of information in Report: No page of this report can be used without this cover page, this notice and the project property identifier. The information in Report(s) may not be modified or re-sold.

Your Liability for misuse: Using this Service and/or its reports in a manner contrary to this Notice or your agreement will be in breach of copyright and contract and ERIS may obtain damages for such mis-use, including damages caused to third parties, and gives ERIS the right to terminate your account, rescind your license to any previous reports and to bar you from future use of the Service.

No warranty of Accuracy or Liability for ERIS: The information contained in this report has been produced by ERIS Information Inc. ("ERIS") using various sources of information, including information provided by Federal and State government departments. The report applies only to the address and up to the date specified on the cover of this report, and any alterations or deviation from this description will require a new report. This report and the data contained herein does not purport to be and does not constitute a guarantee of the accuracy of the information contained herein and does not constitute a legal opinion nor medical advice. Although ERIS has endeavored to present you with information that is accurate, ERIS Information Inc. disclaims, any and all liability for any errors, omissions, or inaccuracies in such information and data, whether attributable to inadvertence, negligence or otherwise, and for any consequences arising therefrom. Liability on the part of ERIS is limited to the monetary value paid for this report.

Trademark and Copyright: You may not use the ERIS trademarks or attribute any work to ERIS other than as outlined above. This Service and Report(s) are protected by copyright owned by ERIS Information Inc. Copyright in data used in the Service or Report(s) (the "Data") is owned by ERIS or its licensors. The Service, Report(s) and Data may not be copied or reproduced in whole or in any substantial part without prior written consent of ERIS.

Order No: 24041700273p

Project Property: 5411 PATTON ST

SIOUX CITY, IA 51111

Order No: 24041700273 **Date Completed:** 04/26/2024

Title to the estate or interest covered by this report appears to be vested in: CHARLES H OEHLERKING, TRUSTEE OF THE CHARLES H OEHLERKING REVOCABLE TRUST

The following is the current property legal description (See deed for full legal description):

LL-SC COMM 88-48 67.94 FT TO POB; THE C W 275 FT, NWLY 385 FT, & SELY 615.52 F T) AND (EX PT FOR AI RPORT) 26-88-48 LOT 1 & LOT 2 BRASSF IELD ISLAND 26-88-48 (EX TCT COM INTERSE CTION ON N LINE SEC 25 & E MEANDER LINE OF BRASSFIELD ISLAND THEC S 1115 .4 FT

Assessor's Parcel Number(s): 884826200003 AND 583201

TARGET PROPERTY INFORMATION

ADDRESS

5411 PATTON ST SIOUX CITY, IA 51111

RESEARCH SOURCES

RECORDER: WOODBURY COUNTY RECORDER'S OFFICE

ASSESSOR: WOODBURY COUNTY ASSESSOR'S OFFICE

STATE: IOWA DEPARTMENT OF NATURAL RESOURCES

FEDERAL: UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

OTHER: JUDICIAL RECORDS NOT SEARCHED. BASED ON AVAILABLE INFORMATION EVALUATED BY THE TITLE SEARCH

PROFESSIONAL, THE JURISDICTION DOES NOT REQUIRE A SEARCH OF JUDICIAL RECORDS IN ORDER TO

IDENTIFY ENVIRONMENTAL LIENS.

NOTES: PUBLIC RECORDS OF WOODBURY COUNTY, IA WERE SEARCHED FROM JANUARY 1, 1980 TO APRIL 8, 2024,

AND NO OTHER DEEDS VESTING TITLE IN THE SUBJECT PROPERTY WERE FOUND OF RECORD DURING THE

PERIOD SEARCHED.

Order No: 24041700273

Order No: 24041700273

ENVIRONMENTAL LIENS

Environmental Lien: [X] NOT FOUND

ACTIVITY AND USE LIMITATIONS (AULs)

AULs: [X] NOT FOUND

CHAIN OF TITLE TO 1980

1. Deed Type: WARRANTY DEED

Deed Date: 07/10/2013 Recorded: 07/18/2013

Grantor: CHARLES H OEHLERKING AND BARBARA H OEHLERKING

Grantee: CHARLES H OEHLERKING, TRUSTEE OF THE CHARLES H OEHLERKING REVOCABLE TRUST

Instrument: BOOK 730 / PAGE 9986

Notes: GRANTOR CHARLES H OEHLERKING GAINED TITLE PRIOR TO 1980

RESEARCH CONDUCTED BACK TO 1980. NO OTHER DEEDS OF RECORD FOUND POST DECEMBER 31,

1979 (BETWEEN 01/01/1980 AND 07/18/2013).

Order No: 24041700273

Order No: 24041700273

LEASES AND MISCELLANEOUS

Comments: NONE IDENTIFIED.

The ERIS Environmental Lien Search Report to 1980 provides results from a search of available current land title records for environmental cleanup liens and other activity and use limitations, such as engineering and institutional controls.

A network of professional, trained researchers, following established procedures, uses client supplied property information to:

- Search for parcel information and / or legal description
- Search for ownership information
- Research official land title documents recorded at jurisdictional agencies such as recorder's' office, registries of deeds, county clerks' offices, etc.
- Access copies of deeds to 1980
- Search for environmental encumbrance(s) associated with the deeds
- Provide a copy of any environmental encumbrance(s) based upon a review of keywords in the instrument(s) (title, parties involved and description)
- Provide a copy of the deeds or cite documents reviewed

Thank You for Your Business

Please contact ERIS at 416-510-5204 or info@erisinfo.com

with any questions or comments

LIMITATION

This report is neither a guarantee of title, a commitment to insure, or a policy of title insurance. ERIS – Environmental Risk Information Services does not guarantee nor include any warranty of any kind whether expressed or implied, about the validity of all information included in this report since this information is retrieved as it is recorded from various agencies that make it available. The total liability is limited to the fee paid for this report.

Order No: 24041700273

DEED EXHIBIT

RE-RECORD

Roll 730 Image 8682-8685

Document 586 Type WD Pages 4 Date 7/12/2013 Time 3:00 PM Rec Amt \$22.00 Aud Amt \$30.00

PATRICK F GILL, AUDITOR AND RECORDER

WOODBURY COUNTY 10WA

Roll 730 Image 9986-9990 Document 856 Type WD Pages 5

Date 7/18/2013 Time 1:23 PM Rec Amt \$27.00 Aud Amt \$30.00

PATRICK F GILL, AUDITOR AND RECORDER C WOODBURY COUNTY IOWA

WARRANTY DEED

THE IOWA STATE BAR ASSOCIATION Official Form #101 **Recorder's Cover Sheet**

Preparer Information: (Name, address and phone number)

James R. Westergaard, P. O. Box 198, 515 Main St., Mapleton, IA 51034, Phone: (712)

881-2321

Taxpayer Information: (Name and complete address) Charles H. Oehlerking, PO Box 168, Sgt. Bluff, IA 51054

Return Document To: (Name and complete address)

James R. Westergaard, P. O. Box 198, 515 Main St., Mapleton, IA 51034, Phone: (712)

881-2321

Grantors:

Charles H. Oehlerking Barbara Oehlerking

Grantees:

Charles H. Oehlerking, Trustee of the Charles H. Oehlerking Revocable Trust

Dated July 10, 2013

Legal description: See Page 2

Document or instrument number of previously recorded documents:

WARRANTY DEED

$O(O^2)$			
For the consideration of \$1.00		Dollar(s) and other y	valuable consideration,
Charles H. Oehlerking & Barbara Oehle	erking, husband & w		
Charles H. Oehlerking, Trustee of the C	harles H. Oehlerkin	g Revocable Trust Dat	do hereby Convey to
Charles 11. Ochierking, Trustee of the C		g Revocable Trust Dat	the
following described real estate in See Exhibit "A" Attached	Woodbury	County, Io	wa:
Exempt from declaration & transfer tax. 428A.2(21).	Actual consideration	on less than \$500.00. I	owa Code Section
Grantors do Hereby Covenant with estate by title in fee simple; that they have greal estate is free and clear of all liens and covenant to Warrant and Defend the real estated. Each of the undersigned hereby relit to the real estate. Words and phrases here singular or plural number, and as masculine	good and lawful author encumbrances except state against the lawfu nquishes all rights of d in, including acknowle	fity to sell and Convey the as may be above stated of claims of all persons en lower, homestead and did dgment hereof, shall be	e real estate; that the ; and grantors ccept as may be above stributive share in and
	_	Dated: July 10,	2013
Charles H. Oehlerking	grantor)	Barbara Ochlerking	
(0	Grantor)		(Grantor)

The Iowa State Bar Association 2007 IOWADOCS®

Parcel I

Lots 1 & 2 in Section 23, Lots 1, 2 & 3 in Section 24, & Lot 1 partly in Section 25 & partly in Section 26, & Lot 2 in Section 26, all in Township 88 Range 48 according to the official plat of State survey returned by Martin Holmvig, County Surveyor, dated September 10, 1904; and recorded in Plat Book 13 on Page 41; all in the County of Woodbury and State of Iowa and accretions lands thereto EXCEPT a tract of land situated in the North ½ of the North ½ of Section 26 & accretions thereto, in Township 88 North Range 48 West of the 5th P.M. Woodbury County, Iowa more particularly described as follows: Commencing at the Southeast corner of said North ½ of the North ½; thence North 89° 56′ 53″ West, along the South line of said North ½ of the North ½ a distance of 1374.87 feet, to the point beginning of said tract of land to be described; thence continuing along said South line of the North ½ of the North ½ a distance of 2670.72 feet; thence North 45° 53' 18" East a distance of 1142.61 feet; thence South 89° 34′ 16" East, a distance of 1001.88 feet; thence South 47° 02′ 07" East, a distance of 1159.50 feet to the point of beginning. ANDEXCEPT those portions of Lots 1 & 2 of Section 24 & Lot 1 of Section 23 and accreted lands thereto, Township 88 North Range 48 West of the 5'h P.M., according to the official Plat of Survey of Brassfield's Island returned by Martin Holmvig, County Surveyor, dated September 10, 1904; and recorded in Plat Book 13 on Page 41; all in Woodbury County, Iowa, described as follows: Beginning at the intersection of the East-West center line of Section 24 in Township 88 North, Range 48 West of the 5th P.M., and the East Meander Line of said Brassfield's Island, said point being a found Concrete Monument; thence South 05° 03' 42" West along said East Meander Line for a distance of 319.87 feet; thence North 89° 03' 40" West for a distance of 4294.83 feet to the beginning of a Meander Line along the East bank of the Missouri River, said Meander Line courses are as follows; thence North 51° 42' 39" East for a distance of 628.09 feet; thence North 46° 24' 37" East for a distance of 1332.00 feet to the intersection of said Meander Line with the South line of Bridgeport Industrial Park 2nd Addition to the City of Sioux City, Iowa, as recorded in the Recorder's Office of the Woodbury County Courthouse; thence South 89° 03' 40" East along said South line for a distance of 2714.99 feet to the intersection of said South line with the West line of the parcel of land described by survey recorded on Roll 249, Image 973 in said Recorder's Office; thence South 14° 40' 28" East along said West line for a distance of 43.35 feet; thence South 15° 18' 03" East along said West line for a distance of 93.85 feet; Thence South 36° 30' 39" East along said West line for a distance of 162.04; feet thence South 26° 44' 35" East along said West line for a distance of 291.21 feet; thence South 10° 57' 34" West along said West line for a distance of 501.22 feet to the intersection of said West line with the East-West centerline of said Sec. 24; thence South 89° 59' 07" West along said East-West centerline for a distance of 17.80 feet to the Point of Beginning, containing 109.28 acres, including 0.51 acres of public right-of-way, subject to easements, if any, of record or apparent. Basis of Bearings; The South line of Bridgeport Industrial Park 2nd Addition is assumed to bear South 89° 03' 40" East to conform to platted surveys of record AND EXCEPT those portions of Lot 1 & Lot 2 lying in Section 26, Township 88 North, Range 48 West of the 5th P.M., according to the official Plat of Survey of Brassfield's Island returned by Martin Holmvig, County Surveyor dated September 10, 1904, and recorded in Plat Book 13 on Page 41, field notes on record in County Engineer's GLO records book; all in Woodbury County, Iowa, described as follows: commencing at the intersection of the north line of Section 25, Township 88 North, Range 48 West of the 5th P.M., and the east meander of said Brassfield's Island, said point being a found Concrete Monument; thence South 00° 30' West

along said meander line for a distance of 1115.4 feet; thence South 22° 30' West along said meander line for a distance of 222.54 feet to the South line of said Lot 1; thence South 89° 58' 50" West along the south line of said Lot 1 for a distance of 2167.94 feet to the Point of Beginning; thence continuing South 89° 58' 50" West along said south line for a distance of 275.00 feet; thence North 47° 04' 48" West for a distance of 385.00 feet; thence South 64° 47' 58" East for a distance of 615.52 feet to the Point of Beginning, containing 36,062 Sq Ft. (0.82 ac) subject to easements, if any, of record or apparent AND EXCEPT

Those portions of Lot 2 of Section 26 & Lot 2 of Section 23 being accreted lands thereto, Township 88 North, Range 48 West of the 5th P.M., according to the official Plat of Survey of Brassfield's Island returned by Martin Holmvig, County Surveyor, dated September 10, 1904, and recorded in Plat Book 13 on Page 41, field notes on record in the County Engineer's GLO records book, all in Woodbury County, Iowa described as follows: Commencing at the intersection of the north line of Section 25, Township 88 North, Range 48 West of the 5th P.M., and the east meander line of said Brassfleld's Island, said point being a found Concrete Monument; thence North 90° 00' 00" West along the north lines of said Sections 25 and 26 for a distance of 4236.51 feet to the Point of Beginning; thence South 36° 13' 00" East for a distance of 657.34 feet; thence North 89° 36′ 57" West for a distance of 539.35 feet; thence South 45° 50′ 37" West for a distance of 1142.61 feet to the South line of Lot 2 in said Section 26; thence South 89° 58' 50" West along said south line and an existing wire fence for a distance of 1594.85 feet to the point of beginning of a Meander Line along the east bank of the Missouri river, said Meander line courses are as follows: Thence North 15° 25' 24" East for a distance of 308.07 feet; Thence North 39° 47' 17" East for a distance of 373.51 feet; Thence North 14° 42' 27" for a distance of 160.34 feet; Thence North 42° 57' 12" East for a distance of 324.46 feet; Thence North 17° 04' 32" East for a distance of 210.58 feet; Thence North 49° 01' 08" East for a distance of 364.15 feet; Thence north 25° 49' 02" East for a distance of 170.11 feet; Thence North 46° 52' 11" East for a distance of 347.40 feet; Thence North 32° 39' 27" East for a distance of 527.83 feet; Thence North 52° 36' 54" East for a distance of 285.41 feet to the end of said Meander Line; Thence South 36° 13' 00" East for a distance of 1365.60 feet to the Point of Beginning, containing 81.99 acres subject to easements, if any, of record or apparent

AND EXCEPT

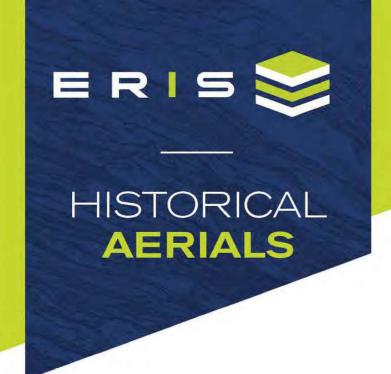
Those portions of Lots Two (2) and Three (3) of Section Twenty-four (24) and Lots One (1) and Two (2) of Section Twenty-three (23) and accreted lands thereto, Township Eighty-eight (88) North, Range Forty-eight (48) West of the 5th P.M., according to the official Plat of Survey of Brassfield's Island returned by Martin Holmvig, County Surveyor, dated September 10, 1904; and recorded in Plat Book 13 on Page 41; all in Woodbury County, Iowa, described as follows: Commencing at the intersection of the east-west center line of Section Twenty-four (24) in Township Eighty-eight (88) North, Range Forty-eight (48) West of 5th P.M., and the east meander line of said Brassfield's Island, said point being a found Concrete Monument; thence South Five Degrees Three Minutes Forty-two Seconds (S 05° 03' 42") West along said east meander line for a distance of Three Hundred Nineteen and Eighty-seven Hundredths feet (319.87') to the Point of Beginning; thence continuing South Five Degrees Three Minutes Forty-two Seconds (S 05° 03' 42") West along said east meander line for a distance of Nine Hundred Twelve and Twelve Hundredths feet (912.12'); thence South Twenty Degrees Nine Minutes Nineteen Seconds (S 20° 09' 19") West along said east meander line for a distance of Four Hundred Forty-nine and

RE-RECORD

Twenty-eight Hundredths feet (449.28'); thence North Eighty-nine Degrees Three Minutes Forty Seconds (N 89° 03' 40") West for a distance of Five Thousand One Hundred Seventy-nine and Seventy-three Hundredths feet (5179.73'); thence North Thirty-five Degrees Fifty-two Minutes Eighteen Seconds (N 35° 52' 18") West for a distance of One Hundred Twenty-nine and Eighty-seven Hundredths feet (129.87') to the beginning of a Meander Line along the east bank of the Missouri river, said Meander Line courses are as follows: thence North Thirty-five Degrees Twenty-three Minutes Seven Seconds (N 35° 23' 07") East for a distance of Two Hundred Ten and Three Tenths feet (210.3'); thence North Fifty Degrees Five Minutes Fifty-nine Seconds (N 50° 05' 59") East for a distance of Four Hundred feet (400.0'); thence North Thirty-four Degrees Twenty-five Minutes Ten Seconds (N 34° 25' 10") East for a distance of Four Hundred Seventy feet (470.0'); thence North Fifty-one Degrees Forty-eight Minutes Sixteen Seconds (N 51° 48' 16") East for a distance of Six Hundred Thirty-eight and Fifty-six Hundredths feet (638.56') to the end of said Meander Line; thence South Eighty-nine Degrees Three Minutes Forty Seconds (S 89° 03' 40") East for a distance of Four Thousand Two Hundred Ninety-four and Eighty-three Hundredths feet (4,294.83') to the Point of Beginning, containing 150.00 acres, including 2.18 acres of public right-of-way, subject to easements, if any, of record or apparent. Basis of Bearings: The south line of Bridgeport Industrial Park 2nd Addition is assumed to bear South Eighty-nine Degrees Three Minutes Forty Seconds (S 89° 03' 40") East to conform to platted surveys of record.

AND

Parcel 2


The West Half of the Southwest Quarter (W1/2 SW1/4) of Section Thirty-six (36), Township Eighty-seven (87) North, Range Forty-seven (47), West of the Fifth Principal Meridian in the County of Woodbury and State of Iowa.

Parcel 3

A parcel of land located in the Northwest Quarter (NW1/4) of the Southwest Quarter (SW1/4) of Section Twelve (12), Township Eighty-seven (87) North, Range Forty-eight (48) West of the Fifth Principal Meridian, Woodbury County, Iowa, further described as follows: Beginning at the West Quarter (W1/4) corner of said Section Twelve (12); thence South Eighty-five Degrees Thirty-nine Minutes (S 85° 39') East Five Hundred Feet (500.00') along the north line of said Northwest Quarter (NW1/4) of the Southwest Quarter (SW1/4); thence South One Thousand Three Hundred Seven and Two tenths feet (1307.20') to a point on the south line of said Northwest Quarter (NW1/4) of the Southwest Quarter (SW1/4); thence North Eighty-six Degrees Fifteen Minutes (N 85° 15') West Four Hundred Ninety-nine and Sixty-three Hundredths feet (499.63') to a point on the west line of said Northwest Quarter (NW1/4) of the Southwest Quarter (SW1/4); thence North One Thousand Three Hundred Twelve and Forty-six Hundredths feet (1,312.46') along said West line to the point of beginning, said parcel contains 15.00 acres, more or less, including 1.35 acres, more or less, of established roadway.

Exempt from declaration & transfer tax. Actual consideration less than \$500.00. Iowa Code Section 428A.2(21).

Project Property: Sioux Gateway Airport NEPA

n/a

Sioux City IA


Project No: 23S049.00 Phase 130 Task 307

Requested By: Foth Infrastructure & Environment LLC

Order No: 24041700273 **Date Completed:** April 19,2024

Aerial Maps included in this report are produced by the sources listed above and are to be used for research purposes including a phase I report. Maps are not to be resold as commercial property. ERIS provides no warranty of accuracy or liability. The information contained in this report has been produced using aerial photos listed in above sources by ERIS Information Inc. (in the US) and ERIS Information Limited Partnership (in Canada), both doing business as 'ERIS'. The maps contained in this report do not purport to be and do not constitute a guarantee of the accuracy of the information contained herein. Although ERIS has endeavored to present information that is accurate, ERIS disclaims, any and all liability for any errors, omissions, or inaccuracies in such information and data, whether attributable to inadvertence, negligence or otherwise, and for any consequences arising therefrom. Liability on the part of ERIS is limited to the monetary value paid for this report.

Date	Source	Scale	Comments
2023	Maxar Technologies	1" = 500'	
2021	United States Department of Agriculture	1" = 500'	
2019	United States Department of Agriculture	1" = 500'	
2017	United States Department of Agriculture	1" = 500'	
2015	United States Department of Agriculture	1" = 500'	
2014	United States Department of Agriculture	1" = 500'	
2013	United States Department of Agriculture	1" = 500'	
2011	United States Department of Agriculture	1" = 500'	
2010	United States Department of Agriculture	1" = 500'	
2009	United States Department of Agriculture	1" = 500'	
2008	United States Department of Agriculture	1" = 500'	
2006	United States Department of Agriculture	1" = 500'	
2005	United States Department of Agriculture	1" = 500'	
2004	United States Department of Agriculture	1" = 500'	
2000	United States Geological Survey	1" = 500'	
1993	United States Geological Survey	1" = 500'	
1991	United States Geological Survey	1" = 500'	
1983	United States Geological Survey	1" = 500'	
1973	Agricultural Stabilization & Conserv. Service	1" = 500'	
1966	United States Geological Survey	1" = 500'	
1960	Agricultural Stabilization & Conserv. Service	1" = 500'	
1953	Army Mapping Service	1" = 500'	Best Copy Available
1949	Agricultural Stabilization & Conserv. Service	1" = 500'	
1938	Agricultural Stabilization & Conserv. Service	1" = 500'	

Project Property: Sioux Gateway Airport NEPA


n/a

Sioux City IA None

Project No: 23S049.00 Phase 130 Task 307

Requested By: Foth Infrastructure & Environment LLC

Order No: 24041700273 **Date Completed:** April 17, 2024

2023 Year: Source: MAXAR 1" = 500' Scale:

Address: n/a, Sioux City, IA Approx Center: -96.39699546,42.4127437

Comment:

2021 Year: Source: **USDA** 1" = 500' Scale:

Comment:

Address: n/a, Sioux City, IA

2019 Year: Source: **USDA** 1" = 500' Scale:

Address: n/a, Sioux City, IA

Approx Center: -96.39699546,42.4127437

Comment:

2017 Year: Source: **USDA**

Approx Center: -96.39699546,42.4127437

1" = 500' Scale:

Comment:

Order No: 24041700273

2015 Year: Source: **USDA**

Approx Center: -96.39699546,42.4127437

1" = 500' Scale: Comment:

2014 Year: Source: **USDA** 1" = 500' Scale:

Comment:

Address: n/a, Sioux City, IA

2013 Year: Source: **USDA** 1" = 500' Scale:

Comment:

Address: n/a, Sioux City, IA

Year: 2011 Source: **USDA** 1" = 500' Scale:

Comment:

Address: n/a, Sioux City, IA

2010 Year: Source: **USDA** 1" = 500' Scale:

Address: n/a, Sioux City, IA

Approx Center: -96.39699546,42.4127437

Comment:

Year: 2009 Source: **USDA** Address: n/a, Sioux City, IA Approx Center: -96.39699546,42.4127437

1" = 500' Scale:


Comment:

Order No: 24041700273

Year: 2008 Source: **USDA**

Scale: Comment:

1" = 500'

Address: n/a, Sioux City, IA

2006 Year: Source: **USDA** Address: n/a, Sioux City, IA


Approx Center: -96.39699546,42.4127437

1" = 500' Scale: Comment:

Year: 2005 Source: USDA

Approx Center: -96.39699546,42.4127437

Scale: 1" = 500'

Comment:

2004 Year: Source: **USDA** Scale:

Comment:

Approx Center: -96.39699546,42.4127437

1" = 500'

2000 Year:

Scale: Comment:

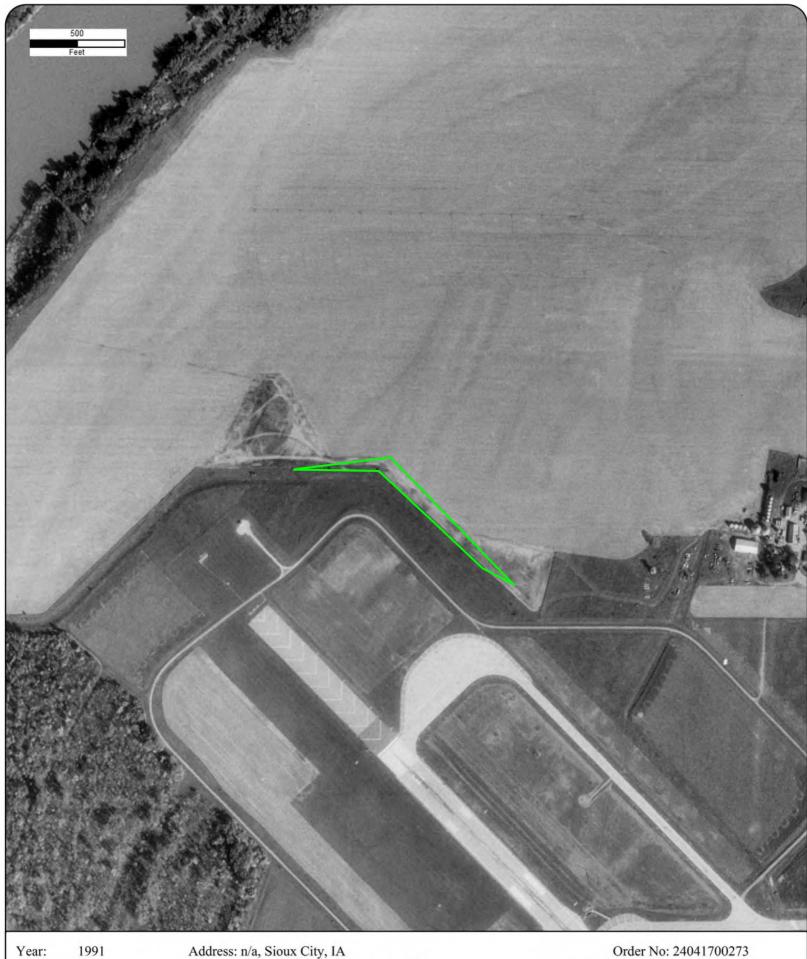
Source: **USGS**

1" = 500'

Order No: 24041700273

Year:

Comment:


USGS Source:

1" = 500' Scale:

Year: USGS Source:

Approx Center: -96.39699546,42.4127437

1" = 500' Scale: Comment:

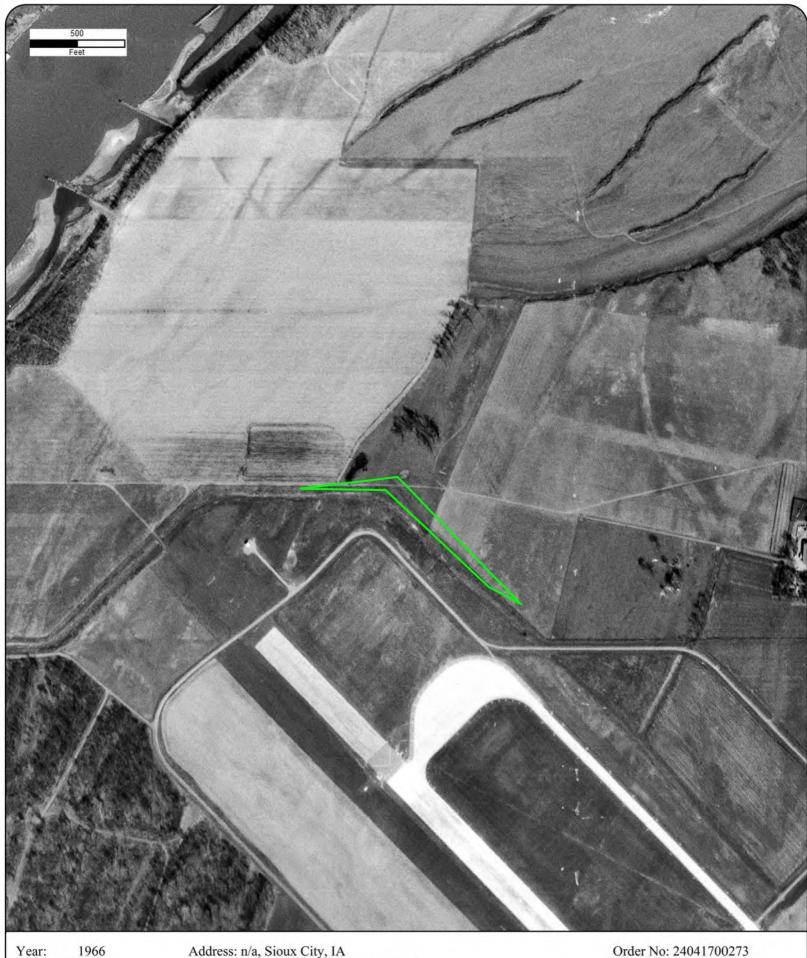
Year: 1983 Source: USGS 1" = 500' Scale:

Comment:


Address: n/a, Sioux City, IA

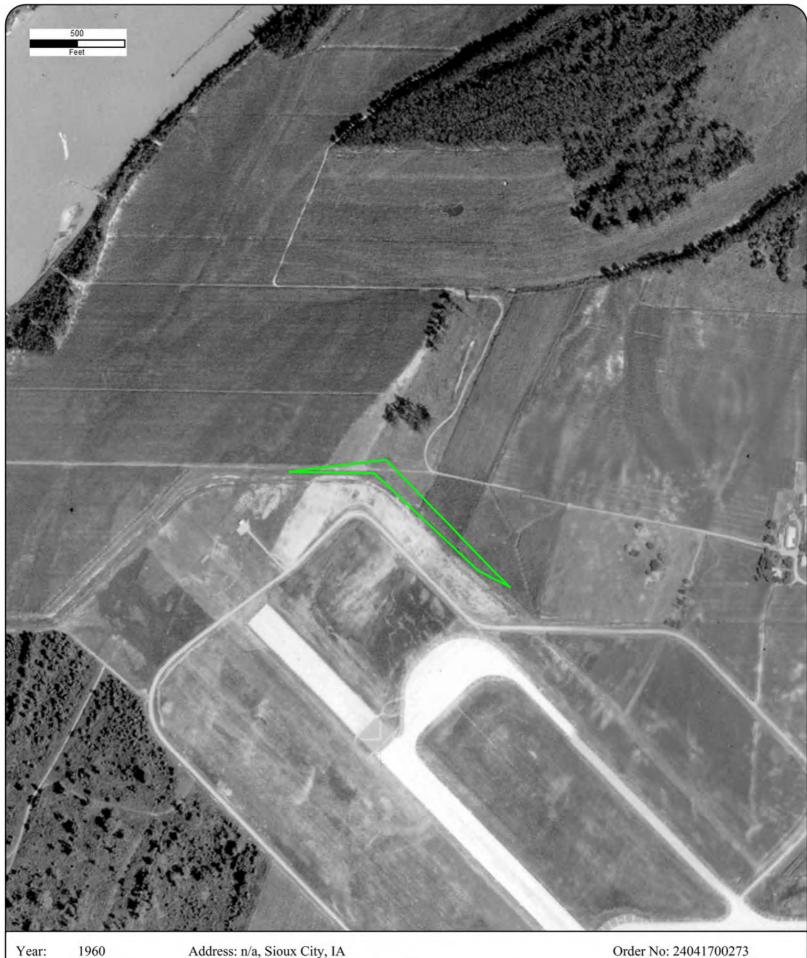
Approx Center: -96.39699546,42.4127437

Scale: Comment:


ASCS Source:

1" = 500'

Year: Source: USGS Address: n/a, Sioux City, IA


Approx Center: -96.39699546,42.4127437

1" = 500' Scale: Comment:

Year:

Comment:

ASCS Source: 1" = 500' Scale:

Address: n/a, Sioux City, IA

Approx Center: -96.39699546,42.4127437

Year: Source:

AMS

Address: n/a, Sioux City, IA

Approx Center: -96.39699546,42.4127437

1" = 500' Scale:

Comment: Best Copy Available

Year: 1949 Source: **ASCS** Address: n/a, Sioux City, IA

Approx Center: -96.39699546,42.4127437

1" = 500' Scale: Comment:

Year: Source:

Scale: Comment:

ASCS

1" = 500'

Address: n/a, Sioux City, IA

Approx Center: -96.39699546,42.4127437

We have searched USGS collections of current topographic maps and historical topographic maps for the project property. Below is a list of maps found for the project property and adjacent area. Maps are from 7.5 and 15 minute topographic map series, if available.

Year	Map Series
2018	7.5
2015	7.5
2013	7.5
1995	7.5
1976	7.5
1971	7.5
1963	7.5

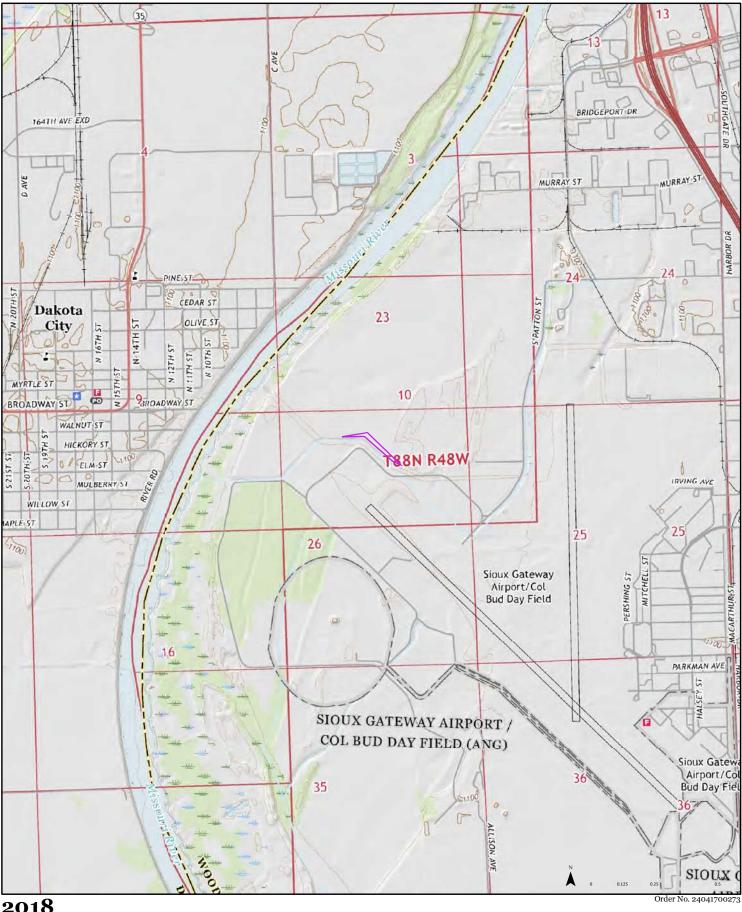
Topographic Map Symbology for the maps may be available in the following documents:

Pre-1947

Page 223 of 1918 Topographic Instructions
Page 130 of 1928 Topographic Instructions
1947-2009
Topographic Map Symbols

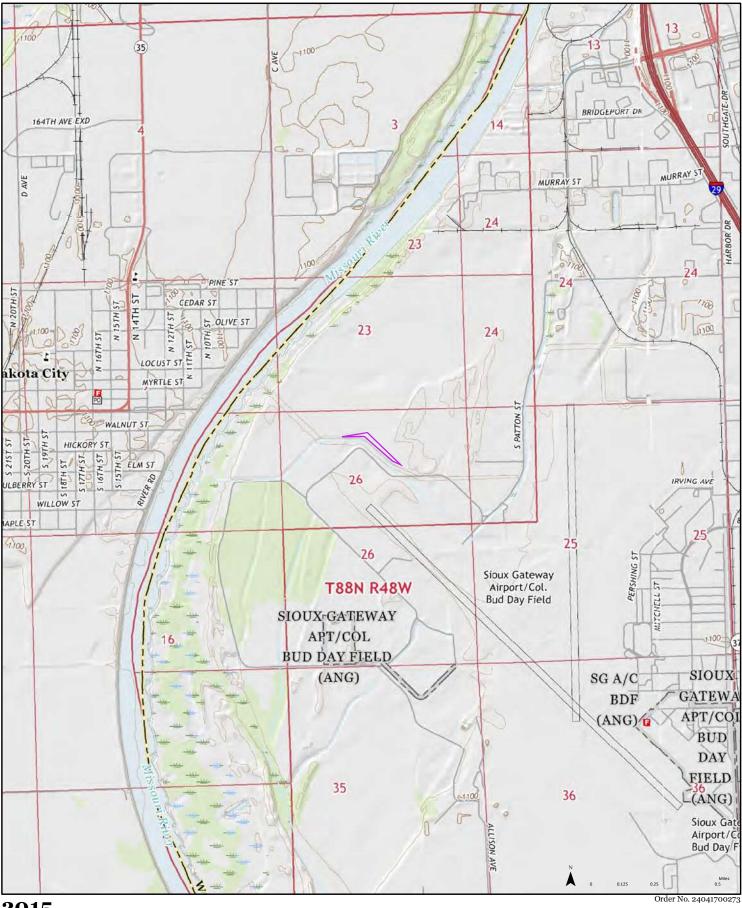
2009-present

US Topo Map Symbols


Topographic Maps included in this report are produced by the USGS and are to be used for research purposes including a phase I report. Maps are not to be resold as commercial property.

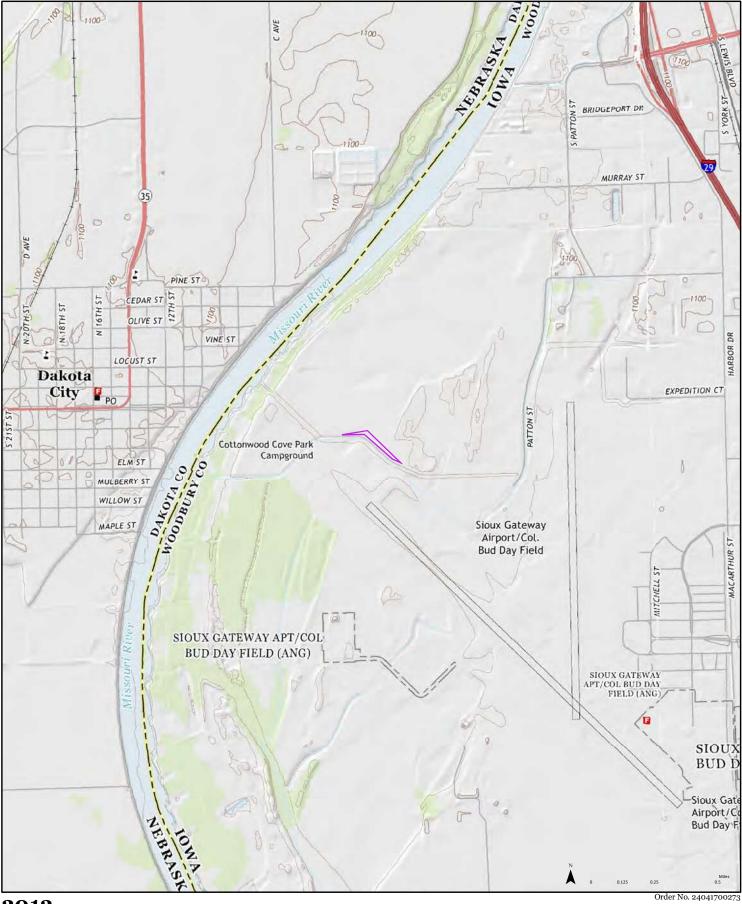
No warranty of Accuracy or Liability for ERIS: The information contained in this report has been produced by ERIS Information Inc.(in the US) and ERIS Information Limited Partnership (in Canada), both doing business as 'ERIS', using Topographic Maps produced by the USGS. This maps contained herein does not purport to be and does not constitute a guarantee of the accuracy of the information contained herein. Although ERIS has endeavored to present you with information that is accurate, ERIS disclaims, any and all liability for any errors, omissions, or inaccuracies in such information and data, whether attributable to inadvertence, negligence or otherwise, and for any consequences arising therefrom. Liability on the part of ERIS is limited to the monetary value paid for this report.

Environmental Risk Information Services


A division of Glacier Media Inc.

1.866.517.5204 info@erisinfo.com erisinfo.com

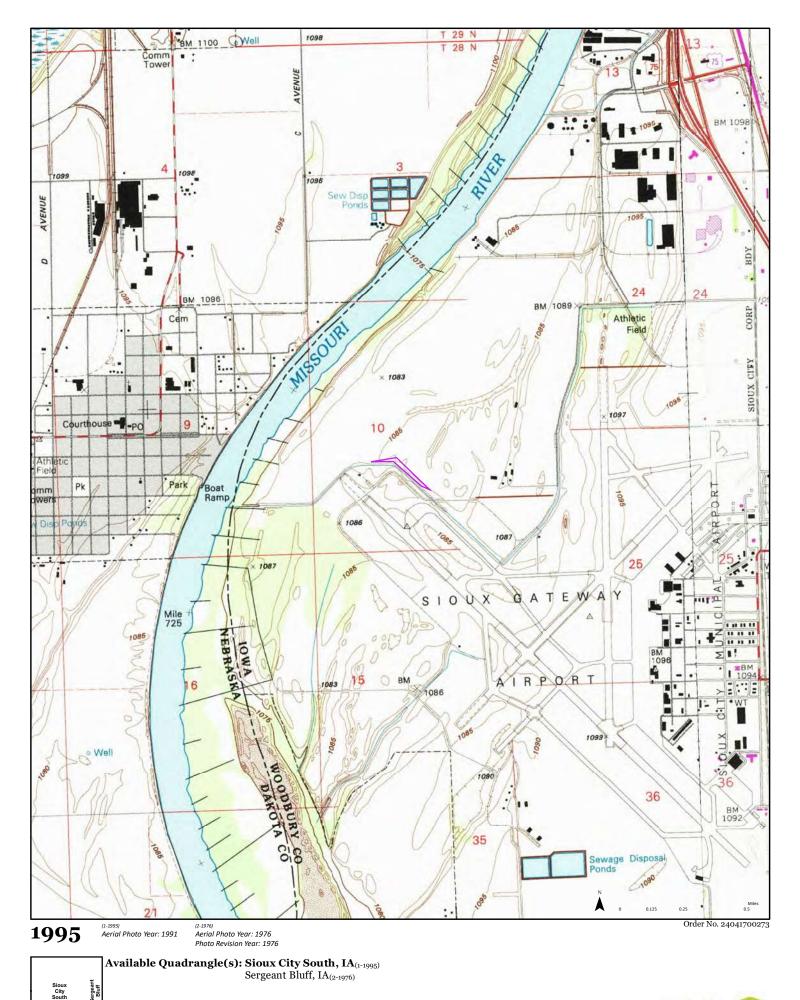
Available Quadrangle(s): Sioux City South, IA Sergeant Bluff, IA Sioux City South Source: USGS 7.5 Minute Topographic Map



Sioux City South

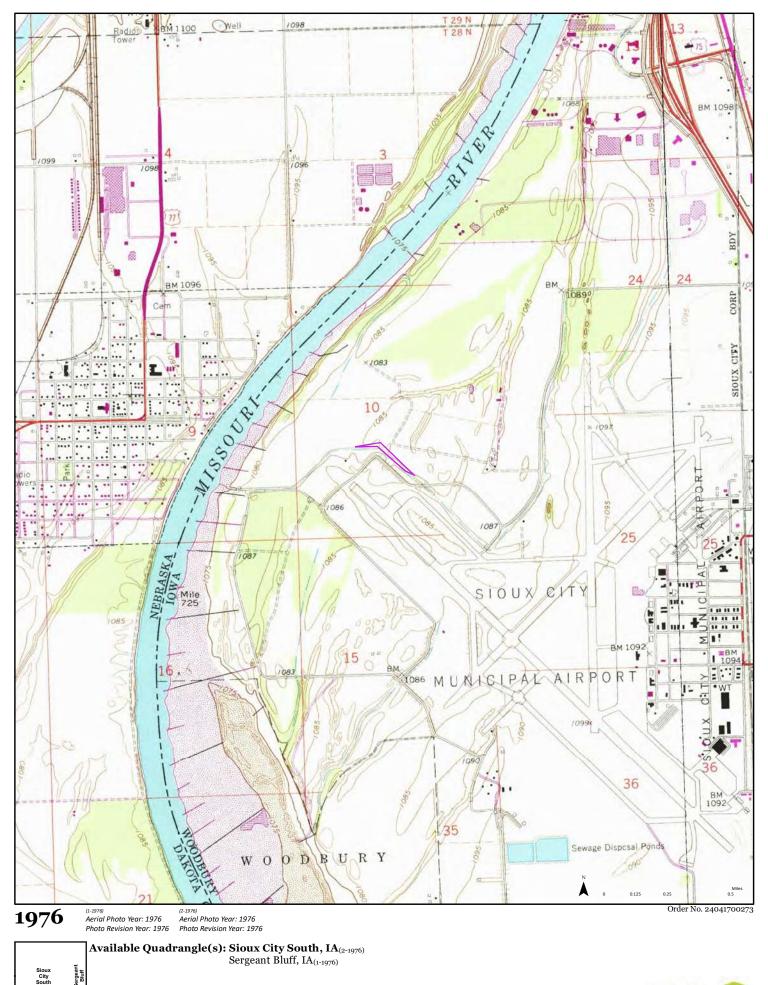
Source: USGS 7.5 Minute Topographic Map

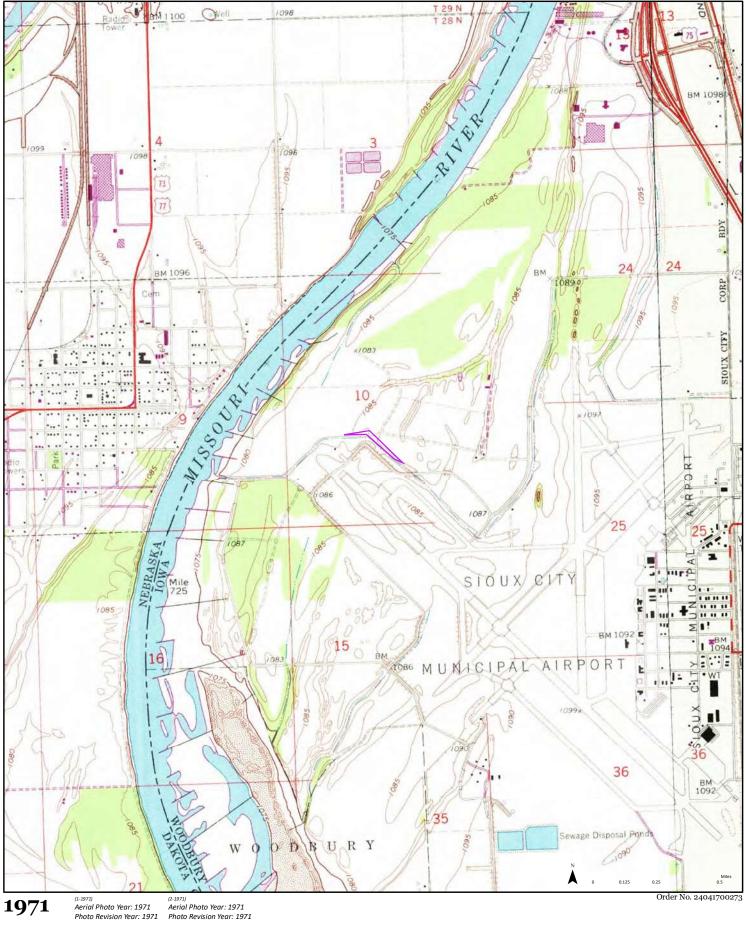
Available Quadrangle(s): Sioux City South, IA Sergeant Bluff, IA



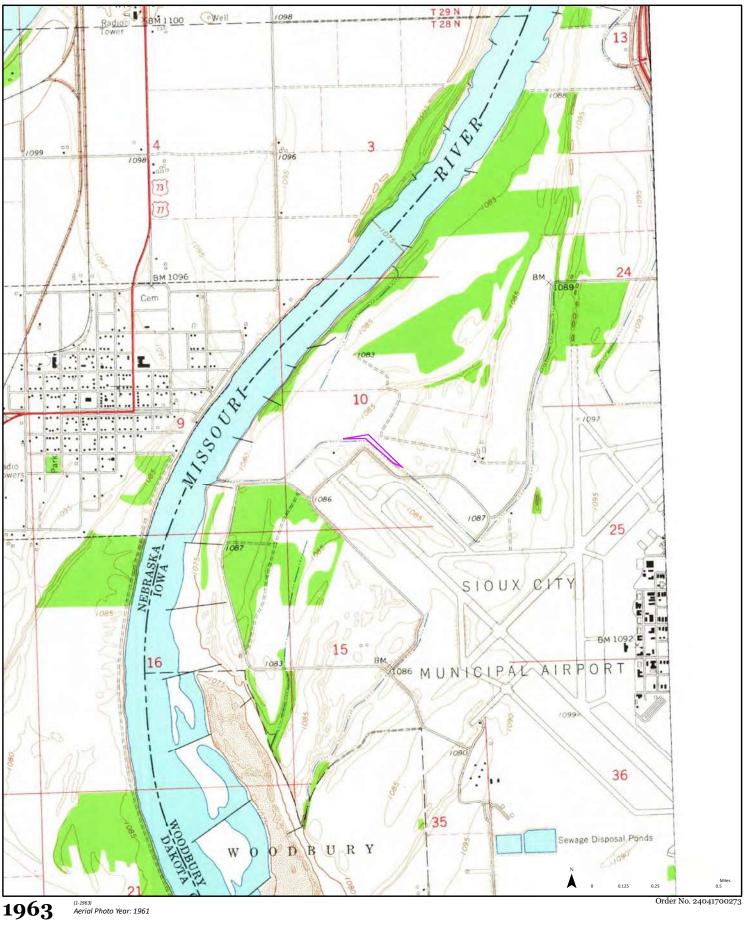
Sioux City South

ource: USGS 7.5 Minute Topographic Map


Available Quadrangle(s): Sioux City South, IA Sergeant Bluff, IA


Source: USGS 7.5 Minute Topographic Map

ERIS


Source: USGS 7.5 Minute Topographic Map

ERIS

Sioux City South, NE₍₂₋₁₉₇₁₎
Sergeant Bluff, IA₍₁₋₁₉₇₁₎
Source: USGS 7.5 Minute Topographic Map

Sloux City South, NE(1-1963)
South S

Project Property: Sioux Gateway Airport NEPA

n/a

Sioux City,IA

Project No: 23S049.00 Phase 130 Task 307

Requested By: Foth Infrastructure & Environment LLC

Order No: 24041700273

Date Completed: April 24, 2024

April 24, 2024 RE: CITY DIRECTORY RESEARCH n/a Sioux City,IA

Thank you for contacting ERIS for an City Directory Search for the site described above. Our staff has conducted a reverse listing City Directory search to determine prior occupants of the subject site and adjacent properties. We have provided the nearest addresses(s) when adjacent addresses are not listed. If we have searched a range of addresses, all addresses in that range found in the Directory are included.

Note: Reverse Listing Directories generally are focused on more highly developed areas. Newly developed areas may be covered in the more recent years, but the older directories will tend to cover only the "central" parts of the city. To complete the search, we have either utilized the ACPL, Library of Congress, State Archives, and/or a regional library or history center as well as multiple digitized directories. These do not claim to be a complete collection of all reverse listing city directories produced.

ERIS has made every effort to provide accurate and complete information but shall not be held liable for missing, incomplete or inaccurate information. To complete this search we used the general range(s) below to search for relevant findings. If you believe there are additional addresses or streets that require searching please contact us at 866-517-5204.

Search Criteria:

all of S Patton St all of Seaboard Triumph Pkwy Search Notes:

Search Results Summary

Date	Source	Comment
2022	DIGITAL BUSINESS DIRECTORY	
2020	DIGITAL BUSINESS DIRECTORY	
2016	DIGITAL BUSINESS DIRECTORY	
2012	DIGITAL BUSINESS DIRECTORY	
2008	DIGITAL BUSINESS DIRECTORY	
2003	DIGITAL BUSINESS DIRECTORY	
2000	DIGITAL BUSINESS DIRECTORY	
1996	POLKS	
1991	POLKS	
1986	POLKS	
1981	POLKS	
1976	POLKS	
1971	POLKS	
1967	POLKS	
1964	POLKS	
1958	POLKS	
1954	POLKS	
1950	POLKS	
1945	POLKS	
1940	POLKS	
1935	POLKS	
1930	POLKS	
1925	POLKS	

2022	S PATTON ST
SOURCE: DIGITAL	BUSINESS DIRECTORY

NO LISTING FOUND

SEABOARD TRIUMPH PKWY 2022

SOURCE: DIGITAL BUSINESS DIRECTORY

5555 SEABOARD TRIUMPH FOODS... NONCLASSIFIED ESTABLISHMENTS

Page: 3

Report ID: 24041700273 - 04/24/2024

2020	S	PATTON ST
SOURCE: DIGITAL	BU.	SINESS DIRECTORY

5555

SEABOARD TRIUMPH PKWY

SOURCE: DIGITAL BUSINESS DIRECTORY

NO LISTING FOUND

SEABOARD TRIUMPH FOODS...NONCLASSIFIED ESTABLISHMENTS

Report ID: 24041700273 - 04/24/2024

2016	S PATTON ST
SOURCE: DIGITAL	BUSINESS DIRECTORY

SEABOARD TRIUMPH PKWY

SOURCE: DIGITAL BUSINESS DIRECTORY

NO LISTING FOUND

NO LISTING FOUND

Report ID: 24041700273 - 04/24/2024 www.erisinfo.com

2012	S PATTON ST	2012
SOURCE: DIGITAL	BUSINESS DIRECTORY	SOURCE: DIGITAL BE

SEABOARD TRIUMPH PKWY

SOURCE: DIGITAL BUSINESS DIRECTORY

NO LISTING FOUND NO LISTING FOUND

> Report ID: 24041700273 - 04/24/2024 www.erisinfo.com

Page: **6**

2008	S PATTON ST	2008	SEABOARD TRIUMPH PKWY
SOURCE: DIGITAL	BUSINESS DIRECTORY	SOURCE: DIGITA	L BUSINESS DIRECTORY

NO LISTING FOUND NO LISTING FOUND

Report ID: 24041700273 - 04/24/2024 www.erisinfo.com

2003	S PATTON ST	2003	SEABOARD TRIUMPH PKWY
OURCE: DIGITA	L BUSINESS DIRECTORY	SOURCE: DIGIT	TAL BUSINESS DIRECTORY

NO LISTING FOUND NO LISTING FOUND

Report ID: 24041700273 - 04/24/2024

2000	S PATTON ST	2000	SEABOARD TRIUMPH PKWY
	BUSINESS DIRECTORY		BUSINESS DIRECTORY
NO I	ISTING FOUND	NO I	ISTING FOUND

1996 S PATTON ST SOURCE: POLKS

1996

SEABOARD TRIUMPH PKWY

SOURCE: POLKS

STREET NOT LISTED

STREET NOT LISTED

Report ID: 24041700273 - 04/24/2024

1991 S PATTON ST

SOURCE: POLKS

SEABOARD TRIUMPH PKWY

SOURCE: POLKS

STREET NOT LISTED STREET NOT LISTED

Report ID: 24041700273 - 04/24/2024

1986 S PATTON ST

SOURCE: POLKS

1986 SEABOARD TRIUMPH PKWY

SOURCE: POLKS

STREET NOT LISTED STREET NOT LISTED

Report ID: 24041700273 - 04/24/2024

1981 S PATTON ST SOURCE: POLKS

1981

SEABOARD TRIUMPH PKWY

SOURCE: POLKS

STREET NOT LISTED

STREET NOT LISTED

Report ID: 24041700273 - 04/24/2024

1976 S PATTON ST
SOURCE: POLKS

1976 SOURCE: POLKS **SEABOARD TRIUMPH PKWY**

STREET NOT LISTED

STREET NOT LISTED

Report ID: 24041700273 - 04/24/2024 www.erisinfo.com

1971 S PATTON ST

TTON ST 1971

SEABOARD TRIUMPH PKWY

SOURCE: POLKS

STREET NOT LISTED STREET NOT LISTED

Report ID: 24041700273 - 04/24/2024 www.erisinfo.com

Page: **15**

1967 S PATTON ST SOURCE: POLKS

1967 SOURCE: POLKS **SEABOARD TRIUMPH PKWY**

STREET NOT LISTED

STREET NOT LISTED

Report ID: 24041700273 - 04/24/2024 www.erisinfo.com

1964 S PATTON ST

SOURCE: POLKS

1964 SEABOARD TRIUMPH PKWY

SOURCE: POLKS

STREET NOT LISTED STREET NOT LISTED

Report ID: 24041700273 - 04/24/2024

1958 S PATTON ST SOURCE: POLKS

1958

SEABOARD TRIUMPH PKWY

SOURCE: POLKS

STREET NOT LISTED

STREET NOT LISTED

Report ID: 24041700273 - 04/24/2024

1954 **S PATTON ST** SOURCE: POLKS

1954

SEABOARD TRIUMPH PKWY

SOURCE: POLKS

STREET NOT LISTED STREET NOT LISTED

Report ID: 24041700273 - 04/24/2024

1950 S PATTON ST

SOURCE: POLKS

1950 SEABOARD TRIUMPH PKWY

SOURCE: POLKS

STREET NOT LISTED STREET NOT LISTED

Report ID: 24041700273 - 04/24/2024

1945	S PATTON ST	1945	SEABOARD TRIUMPH PKWY
OURCE: POLKS		SOURCE: POLKS	

STREET NOT LISTED STREET NOT LISTED

Report ID: 24041700273 - 04/24/2024 www.erisinfo.com

Page: **21**

1940	S PATTON ST	1940	SEABOARD TRIUMPH PKWY
SOURCE: POLKS		SOURCE: POLKS	

STREET NOT LISTED STREET NOT LISTED

Report ID: 24041700273 - 04/24/2024 www.erisinfo.com

1935 S PATTON ST SOURCE: POLKS

1935

SEABOARD TRIUMPH PKWY

SOURCE: POLKS

STREET NOT LISTED STREET NOT LISTED

Report ID: 24041700273 - 04/24/2024 www.erisinfo.com

Page: 23

1930 S PATTON ST SOURCE: POLKS

1930

SEABOARD TRIUMPH PKWY

SOURCE: POLKS

STREET NOT LISTED STREET NOT LISTED

Report ID: 24041700273 - 04/24/2024 www.erisinfo.com

Page: **24**

S PATTON ST 1925 SOURCE: POLKS

1925 SOURCE: POLKS **SEABOARD TRIUMPH PKWY**

STREET NOT LISTED

STREET NOT LISTED

Report ID: 24041700273 - 04/24/2024 www.erisinfo.com

Project Property: Sioux Gateway Airport NEPA

n/a

Sioux City IA

Project No: 23S049.00 Phase 130 Task 307

Requested By: Foth Infrastructure & Environment LLC

Order No: 24041700273 **Date Completed:** April 17, 2024

Please note that no information was found for your site or adjacent properties.

Appendix B

Client-Provided Information

Phase I ESA User Questionnaire

USER OF THIS PHASE I ESA (Client): Sioux Gateway Airport
USER REPRESENTATIVE (Please Type or Print): Mick Morgan, City of Smyr City
PROPERTY (Name & Address): Sioux Gateway Airport, 2403 Aviation Boulevard, Sioux City, IA
DATE: 7/26/24
Introduction In order to qualify for one of the Landowner Liability Protections (LLPs) offered by the Small Business Liability Relief and Brownfields Revitalization Act of 2001 (the "Brownfields Amendments"), RS&H (the Use of this Phase I ESA) must provide the following information (if available) to Foth Infrastructure & Environment, LLC (the environmental professional). Failure to provide this information could result in a determination that "all appropriate inquiry" is not complete.
1. Environmental liens that are filed or recorded against the site (40 CFR 312.25).
Did a search of recorded land title records (or judicial records where appropriate, see Note 1 below) identify any environmental liens filed or recorded against the Property under federal, tribal, state, or local law?
(or see attached) Note 1: In certain jurisdictions, federal, tribal, state/local statutes, or regulations specify that environmental liens and activity and use limitations (AULs) be filed in judicial records rather than land title records In such cases, judicial records must be searched for environmental liens or AULs.
Activity and land use limitations that are in place on the site or that have been filed or recorded in a registry (40 CFR 312.26).
Did a search of recorded land title records (or judicial records where appropriate, see Note 1 above) identify any AULs* , such as engineering controls, land use restrictions, or institutional controls that are in place at the Property and/or have been filed or recorded against the Property under federal, tribal, state, or local law?
NO ☐ YES
(or see attached) * AUL—legal or physical restrictions or limitations on the use of, or access to, a site or facility:
Note 1: To reduce or eliminate potential exposure to hazardous substances or petroleum products in the soil, soil vapor, ground water, and/or surface water on the Property; or Note 2: To prevent activities that could interfere with the effectiveness of a response action, in order to ensure maintenance of a condition of no significant risk to public health or the environment. These legal or physical restrictions, which may include institutional and/or engineering controls, are intended to prevent adverse impacts to individuals or populations that may be exposed to hazardous substances and petroleum products in the soil, soil vapor, ground water, and/or surface water on the Property.

3. Specialized knowledge or experience of the person seeking to qualify for the LLP (40 CFR 312.28).

As the User of this ESA, do you have any specialized knowledge or experience related to the Property or nearby properties? For example, are you involved in the same line of business as the current or former

E1527 - 21

Copyright by ASTM International (all rights reserved)

occupants of the Property or an adjoining Property so that you would have specialized knowledge of the chemicals and processes used by this type of business?
NO YES(or see attached)
 Relationship of the purchase price to the fair market value of the Property if it were not contaminated (40 CFR 312.29).
Does the purchase price being paid for this Property reasonably reflect the fair market value of the Property? If you conclude that there is a difference, have you considered whether the lower purchase price is because contamination is known or believed to be present at the Property?
□ NO ☐ YES <u>fair Maket Valke</u> (or see attached)
5. Commonly known or reasonably ascertainable information about the Property (40 CFR 312.30).
Are you aware of commonly known or reasonably ascertainable information about the Property that would help the environmental professional to identify conditions indicative of releases or threatened releases? For example, as User,
(a.) Do you know the past uses of the Property?
□ NO ☐ YES — Farming (or see attached)
(b.) Do you know of specific chemicals that are present or once were present at the Property?
NO YES(or see attached)
(c.) Do you know of spills or other chemical releases that have taken place at the Property?
YES(or see attached)
(d.) Do you know of any environmental cleanups that have taken place at the Property?
NO YES(or see attached)
6. The degree of obviousness of the presence of likely presence of contamination at the Property, and the ability to detect the contamination by appropriate investigation (40 CFR 312.31).
As the User of this ESA, based on your knowledge and experience related to the Property are there any obvious indicators that point to the presence or likely presence of contamination at the Property?
NO YES(or see attached)

Appendix C

Historical Research Documentation

SIOUX CITY MUNI AIRPORT

Formerly Used Defense Sites Program Management Action Plan Published by: U.S. Army Corps of Engineers, Environmental Programs Data as of 2021 Annual Report to Congress

Table of Contents

<u>l.</u>	Statement of Purpose	3
<u>II.</u>	Acronyms	5
<u>III.</u>	Property Information	7
	A. Property Description	7
	B. Locale	7
	C. Organization	7
	D. National Priorities List Status	7
	E. Project Summaries	9
IV.	Cleanup Program Strategy	10
	A. Historic Activity	10
<u>V.</u>	Installation Restoration Program (IRP)	11
	A. IRP Summary	11
	B. IRP Schedule	11
	C. Project Descriptions	11
	D. Cost	12
VI.	Military Munitions Response Program (MMRP)	13
	A. MMRP Summary	13
	B. MMRP Schedule	13
	C. Project Descriptions	13
	D. Cost	14
VII.	Community Involvement	15
App	pendix I: IRP Project Descriptions	17
Apr	pendix II: MMRP Project Descriptions	19

I. Statement of Purpose

A. Management Action Plan

The Management Action Plan (MAP) is to outline the total multi-year environmental cleanup program for a Formerly Used Defense Site (FUDS) property. The plan will define the cleanup program requirements and propose a comprehensive approach and associated costs to conduct future investigations and response action at each cleanup site.

B. Formerly Used Defense Sites Program

During the past two centuries, the Department of Defense (DOD) has used land throughout the United States to both train Soldiers, Airmen, Sailors and Marines, and test new weapons to ensure the nation's military readiness. As training and testing needs changed, DOD obtained property or returned it to private or public uses. When no longer needed, many of these properties were cleaned up according to the best practices available at the time and then transferred to other owners such as private individuals or federal, state, tribal, or local government entities.

Today, DOD is responsible for the environmental restoration (cleanup) of properties that were formerly owned by, leased to or otherwise possessed by the United States and under the jurisdiction of the Secretary of Defense prior to October 1986. Such properties are known as Formerly Used Defense Sites or FUDS. The U.S. Army is DOD's lead agent for the FUDS Program. The U.S. Army Corps of Engineers executes the FUDS Program on behalf of the U.S. Army and DOD. The U.S. Army and DOD are dedicated to protecting human health and the environment by investigating and, if required, cleaning up potential contamination or munitions that may remain on these properties from past DOD activities.

The scope and magnitude of the FUDS Program are significant, with more than 10, 000 properties identified for potential inclusion in the program. Information about the origin and extent of contamination or munitions, land transfer issues, past and present property ownership, applicable laws and DOD policies must be evaluated before DOD considers a property eligible for Defense Environment Restoration Account funding under the FUDS Program. Environmental cleanup at FUDS properties is conducted under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA).

C. Installation Restoration Program (IRP)

Installation Restoration Program (IRP) category projects include sites that require response actions to address releases of: (a) Hazardous substances and pollutants or contaminants; (b) Petroleum, Oil, and Lubricants (POLs); (c) Hazardous wastes or hazardous waste constituents; and (d) Explosive compounds released to soil, surface water, sediment, or groundwater as a result of ammunition or explosives production or manufacturing at ammunition plants.

The relative risk site evaluation (RRSE) framework is a methodology used by all DoD Components to evaluate the relative risk posed by a site in relation to other sites. It is a tool used across all of DoD to group sites into high, medium, and low categories based on an evaluation of site information using three factors: the contaminant hazard factor (CHF), the migration pathway factor (MPF), and the receptor factor (RF). Factors are based on a quantitative evaluation of Comprehensive Environmental Response, Compensation and Liability Act(CERCLA) hazardous substances, pollutants, or contaminants and a qualitative evaluation of pathways and human and ecological receptors in the four media most likely to result in significant exposure groundwater, surface water, sediment, and surface soils.

D. Military Munitions Response Program (MMRP)

In 2001, DoD established the Military Munitions Response Program (MMRP). The MMRP addresses munitions response sites (MRSs) at Formerly Used Defense Site locations. MRSs are sites that are known or suspected to contain unexploded ordnance, discarded military munitions, or munitions constituents (MC). Through the MMRP, DoD complies with environmental cleanup laws, such as the Comprehensive Environmental Response, Compensation, and Liability Act, also known as Superfund.

To prioritize funding and cleanup of MRSs that pose the greatest threat to safety, human health, and the environment, DoD uses the Munitions Response Site Prioritization Protocol (MRSPP). The MRSPP consists of three separate modules to evaluate hazards associated with explosives, chemical warfare materiel, MC, and other incidental environmental contaminants. The MRSPP scores affect how DoD sequences MRSs for cleanup. In addition to relative risk, DoD considers other factors such as economic, programmatic, and stakeholder concerns, as well as reuse and redevelopment plans, when prioritizing sites for cleanup.

II: Acronyms

BD/DR Building Demolition and Debris Removal

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CHE Chemical Warfare Material Hazard Evaluation

COMM/REL Community Relations

CON/HTRW Containerized/Hazardous, Toxic and Radioactive Waste

CTC Cost to complete

CWM Chemical Warfare Material

DD Decision Document

DERP Defense Environmental Restoration Program

DOD Department of Defense

EE/CA Engineer Evaluation/Cost Analysis

EP Explosive Hazard Factor Evaluation Pending

FFA Federal Facilities Agreement
FUDS Formerly Used Defense Sites

FUDSMIS Formerly Used Defense Sites Management Information System

FS Feasibility Study

HQDA Headquarters, Department of the Army

HHE Health Hazard EvaluationIAG Interagency AgreementIRA Interim remedial action

IRP Installation Restoration Program

LTM Long Term Management
MAP Management Action Plan

MMRP Military Munitions Response Program

MMRP/CWM Military Munitions Response Program/Chemical Warfare Materials

MRSPP Military Munitions Site Prioritization Protocol

NKSH No Known or suspected Hazard

NLR No Longer Required
NPL National Priorities List
PA Preliminary Assessment

PA/INPR Preliminary Assessment/Inventory Project Report

PCO Project Closeout

PN Preliminary Negotiations

QA Quality Assurance RA Remedial Action

RA-C Remedial Action-Construction
RA-O Remedial Action-Operations
RAB Restoration Advisory Board

RC Response Complete

RCRA Resource Conservation and Recovery Act

RD Remedial Design

RmA-C Removal Action-Construction

RmD Removal Design

RI/FS Remedial Investigation/Feasibility Study

RIP Remedy in Place
ROD Record of Decision

RRSE Relative Risk Site Evaluation

Site Investigation

TAPP Technical Assistance for Public Participation

TRC Technical Review Committee

III. Property Information

FUDS Number: B07IA0131 **FFID:** IA79799F021800

Name: SIOUX CITY MUNI AIRPORT

A. Property Description

A major portion of the 2,318.71-acre site is currently owned by the City of Sioux City. Improvements included a hospital, housing, hangars, runways and taxiways, water supply, a sewage system, moving target and rifle ranges, and others. The site is now used as the primary municipal airport and also serves as home for the Iowa Air National Guard. Anticipate promoting project closeout/pending letters to Agencies.

IDNR POCs:

-Rochelle Cardinale

B. Locale

City: SIOUX CITY

State: IA

Latitude: 42.401559999999996 Longitude: -96.38515100000001 Congressional District: 04 Size (Acreage): 2318.71

C. Organization

Division: Northwestern Division

District: Omaha District **Phone:** 402-995-2416

Current Owners:

Туре	Name
Local	CITY

D. National Priorities List Status

The National Priorities List (NPL) is the list of national priorities among the known

releases or threatened releases of hazardous substances, pollutants, or contaminants throughout the United States and its territories. The NPL is intended primarily to guide the EPA in determining which sites warrant further investigation.

National Priorities List (NPL) Status: Not on the NPL

E. Project Summaries

The below table outlines all projects that have been identified on this FUDS property. The table provides information on the category of project, the legal driver, the RRSE or MRSPP score that is used for prioritization, the total funding for the project, the status of work on the project, and the actual or anticipated remedy in place and response complete dates.

Project Number	Category	Name	Legal Driver	RRSE	MRSPP	Status	RIP	RC
01	CON/HTR W	CON/HTRW	State			Complete	09/1993 Actual	09/1993 Actual
04	PRP/HTR W	PRP/HTRW	CERCLA			Complete	07/2016 Actual	07/2016 Actual

IV. Cleanup Program Summary

A. Historic Activity

DoD use began with construction of the Sioux City Army Air Base in 1942. The property was deeded to the city of Sioux City in 1948 but was recaptured by the Air Force in 1963. Air Force and Air National Guard missions continued until 1969 when the property was reported excess. Underground storage tanks and petroleum issues are the subject of the FUDS Program involvement.

V. Installation Restoration Program (IRP)

A. IRP Summary

Inception of IRP: 07/1990 Projects Identified: 2

Projects at Response Complete: 2 Remedy-in-Place (RIP): 07/2016 Response Complete (RC): 07/2016

IRP completion (including LTM): 07/2016

B. IRP Schedule

Project Schedule

Project No	Category	Site Type	Status	Response Complete
01	CON/HTRW	Underground Storage Tanks	Complete	09/1993 Actual
04	PRP/HTRW	Underground Storage Tanks	Complete	07/2016 Actual

Phase Schedule

Project No	Phase	Phase Type	Status	Start	End
01	RA-C	Remedial Action	Complete	07/1990	09/1993
04	PN	PRP	Complete	07/1992	07/2016
04	RI/FS	Remedial Response	Complete	07/1991	09/1999
04	IRA	Removal Action	Complete	07/1992	09/1992

Five-Year Review

Status: No Reviews Planned

C. Project Descriptions

Please see Appendix I for detailed IRP project descriptions

D. Costs

Funding To Date* (\$K): 4684

2021 Funding (\$K): 0

CTC (\$K): 0

Project No	Phase	Status	< 2021	2021	2022	2023	2024	2025	2026	2027 +
01	RA-C	Complete								
01	IRA	Complete								
04	PN	Complete								
04	RI/FS	Complete								
04	IRA	Complete								

^{*}Past costs are approximate and not inflated to reflect current year fiscal dollars.

= phase funded

VI. Military Munitions Response Program (MMRP)

A. MMRP Summary

Inception of MMRP: 07/1990

Projects Identified: 0

Projects at Response Complete: 0 Remedy-in-Place (RIP): 07/2016 Response Complete (RC): 07/2016

MMRP completion (including LTM): 07/2016

B. MMRP Schedule

Project Schedule

There are no MMRP projects on this installation.

Five-Year Review

Status: No Reviews Planned

C. Project Descriptions

Please see Appendix II for detailed MMRP project descriptions

D. Costs

Funding To Date* (\$K): 0 **2021 Funding (\$K):** 0

CTC (\$K): 0

There are no MMRP project costs on this installation.

*Past costs are approximate and not inflated to reflect current year fiscal dollars.

VII. Community Involvement

Since 1993, the Department of Defense (DOD) has supported the development, implementation, and maintenance of the Restoration Advisory Board (RAB) program. Through the RAB program, communities provide input into the decision - making process of DOD's environmental cleanup program. A RAB is a group, equally cochaired by a DOD representative and a community member, that serves as a forum for exchange of information between government officials and members of the local community on property cleanup issues. In addition to regular RAB meetings, a combination of activities may be conducted to enhance this process. Such activities may include coordinating installation site tours or providing interactive presentations with the use of cleanup technology models. Members of a RAB may include local citizens and representatives of the U.S. Environmental Protection Agency (EPA) and state, local, and tribal governments. The RAB team should reflect the diverse interests of the community and help identify possible issues associated with an installation's environmental cleanup program. RABs provide a link between the community and cleanup decision makers, and should complement other community involvement activities, such as holding public meetings, distributing informative mailings to the public on installation cleanup activities, and establishing local information repositories.

In fiscal year 1998 (FY98), DOD continued to build trust with local communities surrounding military installations by strengthening the RAB program and making new resources available; including the implementation of the Technical Assistance for Public Participation (TAPP) program. The TAPP program was designed to help community members of RABs and TRCs better understand the scientific and engineering issues underlying their properties' environmental cleanup activities. Under TAPP, the installation may contract for an independent technical consultant to advise the RAB on a specific project, which must be identified in the TAPP application. Typical projects may involve reviewing proposed remedial technologies, interpreting health and environmental effects data, or reviewing cleanup documents.

No RAB has been reported

APPENDIX I IRP Project Descriptions

1. Identification

Project ID: 01

Project Name: CON/HTRW

Legal Driver: State

Closeout

RIP Date: 09/1993 Actual **RC Date:** 09/1993 Actual

2. Project Description

No description reported.

3. Restoration History

UST removals were completed on 13 Sep 1991. Presence of free product was monitored and bailed from Sept through Nov, and evaluate rebound, and the need for an alternative free product recovery system.

Per an 8 Jun 1992 letter from the Iowa Department of Natural Resoruces, the Omaha District has been notified that insufficient evidence was submitted to document clean closure for the tanks that were removed as part of this contract. Need product recovery system at building 612.

4. Cleanup/Exit Strategy

No cleanup/exit strategy reported.

5. Status

RRSE: RC-09/1993

Phases

Phase	Status
RA-C	Complete

APPENDIX II MMRP Project Descriptions

There are no MMRP projects on this installation.

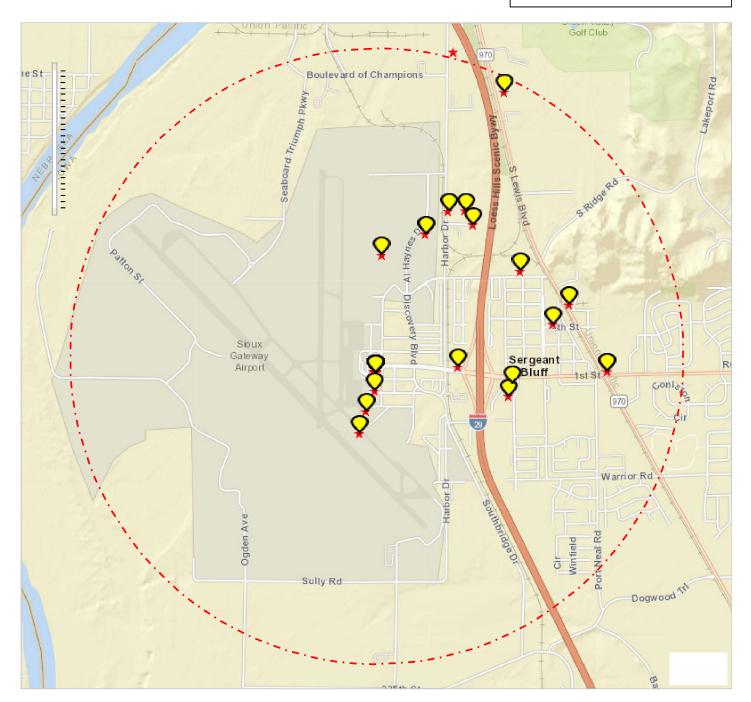
Update Error

Report Error

Reconcile

Reports

Enforcement Help & Instructions ruth.hummel@dnr.iowa.gov


View Map List View

<u>lowa Department of Natural Resources</u> <u>Leaking Underground Storage Tanks (LUST)</u>

Center Latitude: 42.40181
Center Longitude: -96.37665
Radius: 8000 ft
Printed on: 5/15/2024

Legend

★ Leaking UST

Leak Number	UST Number	Facility Name	Address	Classification Date	LUST Status	Staff
9LTI02	198600419	401 Fourth Street	BOX 97 Sergeant Bluff, IA 51054	5/8/2003	No Action Required	Hummel
9LTJ82	199016963	Airport Amoco	I-29 & OGDEN AVENUE Sergeant Bluff, IA 51054	12/4/2003	No Action Required	Hummel
7LTV28	198600972	Crabbs Car Rental	6115 MITCHELL Sioux City, IA 51110	7/26/1991	No Action Required	
8LTJ21	198603590	Diosynth Inc	5500 1/2 BRADLEY STREET Sioux City, IA 51101	3/5/1991	No Action Required	
7LTT06	198608726	Former Bait Shop	502 HWY 75 Sergeant Bluff, IA 51054	10/6/2005	No Action Required	Jergenson
7LTL95	198604314	Mikes Mini-mart	100 1ST ST HWY 75 N Sergeant Bluff, IA 51054	5/29/1990	No Action Required	Cardinale
7LTL95	198604314	Mikes Mini-mart	100 S LEWIS BLVD Sergeant Bluff, IA 51054	5/29/1990	No Action Required	Cardinale
8LTZ60	198604314	Mikes Mini-mart	100 1ST ST HWY 75 N Sergeant Bluff, IA 51054	10/6/2014	No Action Required	Hummel
8LTZ60	198604314	Mikes Mini-mart	100 S LEWIS BLVD Sergeant Bluff, IA 51054	10/6/2014	No Action Required	Hummel
9LTA42	198608753	Ryder Truck Rental #0826	8TH AND C PO BOX 689 Sergeant Bluff, IA 51054	8/2/1995	No Action Required	
9LTA54	198605351	Sergeant Bluffs Cenex	200 1ST ST Sergeant Bluff, IA 51054	4/24/2002	No Action Required	Hummel
8LTO96	198811909	Sherman Building	105 SGT SQUARE DR Sergeant Bluff, IA 51054	10/26/1995	No Action Required	

24, 3.31 AIVI			Leaking Underground Storage	Taliks (LUGT)		
9LTF25	197910348	Sioux City Airport (former Ast Site)	Sioux City, IA 51110	12/23/1999	No Action Required	Cardinale
9LTF26	197910349	Sioux City Airport Aqua- system-gp41	Sioux City, IA 51110	12/23/1999	No Action Required	Cardinale
9LTF28	197910351	Sioux City Airport Aqua- system/amw 18	Sioux City, IA 51110	12/23/1999	No Action Required	Cardinale
9LTF27	197910350	Sioux City Airport Aqua- system/gp8 & Amw8	Sioux City, IA 51110	12/23/1999	No Action Required	Cardinale
7LTL81	198601995	Sioux City Wilbert Vault	HUMBOLDT & HARBOR DRIVE Sioux City, IA 51102	1/28/2000	No Action Required	
7LTG36	198608787	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	12/23/1999	No Action Required	Hummel
7LTG36	198608787	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	12/23/1999	No Action Required	Hummel
7LTT74	198610026	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	5/23/1995	No Action Required	Cardinale
7LTT74	198610026	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	5/23/1995	No Action Required	Cardinale
8LTI77	198608787	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	6/5/2019	No Action Required	Hummel
8LT177	198608787	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	6/5/2019	No Action Required	Hummel
8LTI78	198608787	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	9/20/2000	No Action Required	Cardinale

(24, 9:31 AM		Leaking Underground Storage Tanks (LUST)				
8LT178	198608787	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	9/20/2000	No Action Required	Cardinal
8LTT54	198608787	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	4/13/1999	No Action Required	
8LTT54	198608787	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	4/13/1999	No Action Required	
8LTV35	198608787	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	9/26/1996	No Action Required	
8LTV35	198608787	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	9/26/1996	No Action Required	
8LTV38	198608787	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	6/7/1996	No Action Required	
8LTV38	198608787	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	6/7/1996	No Action Required	
8LTV39	198608787	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	7/24/1996	No Action Required	Cardina
8LTV39	198608787	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	7/24/1996	No Action Required	Cardina
8LTV82	198608787	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	4/27/1999	No Action Required	Cardina
8LTV82	198608787	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	4/27/1999	No Action Required	Cardina
8LTV89	198608787	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	12/23/1999	No Action Required	Humme
8LTV89	198608787	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	12/23/1999	No Action Required	Humme

/24, 9:31 AM		Leaking Underground Storage Tanks (LUST)				
8LTV90	198608787	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	6/11/1996	No Action Required	
8LTV90	198608787	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	6/11/1996	No Action Required	
8LTV91	198608787	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	9/25/1996	No Action Required	
8LTV91	198608787	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	9/25/1996	No Action Required	
8LTV92	198608787	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	3/16/1999	No Action Required	
8LTV92	198608787	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	3/16/1999	No Action Required	
8LTV93	198608787	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	4/13/1999	No Action Required	
8LTV93	198608787	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	4/13/1999	No Action Required	
8LTX25	198610026	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	3/31/1999	No Action Required	Cardinal
8LTX25	198610026	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	3/31/1999	No Action Required	Cardinal
8LTX90	198608787	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	3/16/1999	No Action Required	
8LTX90	198608787	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	3/16/1999	No Action Required	
9LTA01	198610026	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	12/3/1998	No Action Required	

24, 9:31 A l	М		Leaking Underground Storage	Tanks (LUST)		
9LTA01	198610026	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	12/3/1998	No Action Required	
9LTA02	198610026	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	4/1/1999	No Action Required	Cardinale
9LTA02	198610026	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	4/1/1999	No Action Required	Cardinale
9LTA11	198610026	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	6/10/2002	No Action Required	Jergensor
9LTA11	198610026	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	6/10/2002	No Action Required	Jergensor
9LTD60	198608787	Sioux Gateway Airport	2403 OGDEN AVE Sioux City, IA 51110	6/12/1996	No Action Required	
9LTD60	198608787	Sioux Gateway Airport	MUNICIPAL AIRPORT Sergeant Bluff, IA 51054	6/12/1996	No Action Required	
9LTA43	198601855	Specialized Hauling Inc	5000 S LEWIS BLVD Sioux City, IA 51106	10/5/1995	No Action Required	
8LTV73	198606702	Van Buskirk Construction	2900 IRVING AVE BLDG 610 Sioux City, IA 51110	6/17/1996	No Action Required	
9LTD74	198606702	Van Buskirk Construction	2900 IRVING AVE BLDG 610 Sioux City, IA 51110	7/24/1996	No Action Required	

DNR Home | Site Policy | Sign Out 3.2.209.0

Leading lowans in caring for our natural resources.

LUST Sites at Sioux City Airport

UST Reg. No.	LUST No.	RP	Location	Status Information	
8608787	7LTG36	COE	Building 941	FP present (pneumatic pumps in place); T2 NAR, but no cert until FP gone.	
8610026	7LTT74	IANG	Building 269	Fuel oil release. NAR 5/23/95. NFA Cert 6/28/02.	
8608787	8LTI77	COE	Buildings 611/612	FP present (pneumatic pumps in place); T2 NAR, but no cert until FP gone.	
8608787	8LTI78	IANG	Building 671	NAR 9/21/00 T2 NAR. NFA cert 6/28/02.	
8608787	8LTT54	SUX AP	Building 357	NAR 4/13/99; NFA Cert 2/22/00.	
8608787	8LTV35	COE	Building 270	NAR 9/26/99 SCR	
8608787	8LTV38	COE	Building 335	NAR 6/7/96 SCR	
8608787	8LTV39	COE	Buildings 606/607	NAR 7/24/96 SCR Used RBCA Criteria	
8606702	8LTV73	COE	Building 609	NAR 6/17/96; reconfirmed 2/24/98	
8608787	8LTV82	COE	Building 802	NAR 4/27/99; NFA Cert 2/22/00.	
8608787	8LTV89	COE	Building 929/YNR Hanger	FP present (pneumatic pumps in place); T2 NAR, but no cert until FP gone.	
8608787	8LTV90	COE	Building 605/Pallet Shop	NAR 6/11/96 SCR	
8608787	8LTV91	COE	Building 632/AP, Gas Station	NAR 11/27/96 SCR T1 Criteria	
8608787	8LTV92	SUX AP	Building 922/Airway Hanger	NAR 3/16/99; NFA Cert 2/22/00.	
8608787	8LTV93	SUX AP	Building 990/Budget Rental	NAR 4/13/99; NFA Cert 2/22/00.	
8610026	8LTX25	IANG	Building 241	NAR 3/31/99; NFA Cert 4/30/99.	
8608787	8LTX90	SUX AP	Building 991/992/Rental Storage	NAR 3/16/99; NFA Cert 2/22/00.	
8610026	9LTA01	IANG	Building 261/Fuel O&W Sep Tank	NAR 12/3/98; site check; NFA Cert 2/4/99.	
8610026	9LTA02	IANG	Building 252/Fuel O&W Sep Tank	NAR 4/1/99 T1; NFA Cert 4/30/99.	
8610026	9LTA11	IANG	Building 262	NAR 8/30/99. Cease FPR 10/15/07. Cert 10/15/08.	
8608787	9LTD60	COE	Building 642	NAR 6/12/96 SCR	
8606702	9LTD74	COE	Building 610	NAR 7/24/96; re-confirmed 2/24/98.	
			Building 509	NAR	
7910348	9LTF25	COE	Aqua System AST Area	NAR 12/23/99 T2 - FP noted in 10/00; FPR req'd; FPR cease 4/25/08, NAR/cert 9/23/08	
7910349	9LTF26	COE	Aqua System GP-41	NAR 12/23/99 T1	
7910350	9LTF27	COE	Aqua System GP-8/AMW-8	NAR 12/23/99 T1	
	9LTF28	COE	AMW-18	NAR 12/23/99 T1	

Appendix D Photograph Documentation

Photographic Log

Client's Name:Site Location:Project No.RS&HSioux Gateway Airport23S049.00

Photo No. Date: 5/8/24

Direction Photo Taken:

East

Photo Taken By: Morgan Langer

Description:

Western portion of Property.

Photo No. Date: 5/8/24

Direction Photo Taken:

West

Photo Taken By: Morgan Langer

Description:

Western portion of Property.

Photographic Log

Client's Name:Site Location:Project No.RS&HSioux Gateway Airport23S049.00

Photo No.

Date: 5/8/24

Direction Photo Taken:

Southeast

Photo Taken By: Morgan Langer

Description:Eastern portion of Property.

Photo No. Date:

5/8/24

Direction Photo Taken:
Northwest

Photo Taken By: Morgan Langer

Description:Eastern portion of Property.

Photographic Log

Client's Name:Site Location:Project No.RS&HSioux Gateway Airport23S049.00

Photo No. Date: 5 5/8/24

Direction Photo Taken:

Northwest

Photo Taken By: Morgan Langer

Description:

Berm along southern boundary of Property.

Appendix E

Interview Documentation

Phase I ESA Interview Call Documentation

Client:	RS&H	
Project Name:	Sioux Gateway Airport	
Project #:	23S049.00	
Call To:		Representing: USACE Omaha District
Phone No.:	402-995-2416	Date: 5/7/24
Call Made By:	Elyse Kalber	Representing: Foth Infrastructure & Environment, LLC
Reason for call	:	
	formation regarding the FUDS site	at the Sioux City Airport
		ether there's any other documents besides 2021
<u>management a</u>	<u>iction plan, any documents supporti</u>	Ing 2016 PRP (petroleum?)
Information Ob	tained:	
	807IA0131; FFID: IA79799F021800	
5/7: waiting on		
Further action re	· — —	
If yes, action req	uired:	
Action taken:		

Who Should Be Called?

Property-related Contacts: Attempts should be made to interview the past and present owners, operators, and occupants of the Property.

State and/or Local Agency Officials: Attempts should be made to interview a knowledgeable person at each of the following types of state and/or local government agencies:

- Local fire department that serves the Property,
- State and/or local health agency serving the area in which the Property is located,
- State and/or local agency or local/regional office of state agency having jurisdiction over *hazardous waste* disposal or other environmental matters in the area in which the Property is located, or
- Local agencies responsible for the issuance of building permits or groundwater use permits that document the presence of AULs which may identify a recognized environmental condition in the area in which the Property is located.

From: Rick Simons <rsimons@sioux-city.org>

Sent: Friday, June 14, 2024 1:01 PM

To: Kalber, Elyse L

Subject: [External] Oehlerking Property

In my 5-year biosolids plan it list previous farm ground, it shows a Tom Oehlerking 36 acres plat map id 11-87N-48W, I don't know if that the address you're looking for, I cannot confirm the city has applied biosolids to the address you gave me. The city could have done the property when the wastewater plant was privatized, they spread liquid biosolids.

The city took it back in 2010, I believe around 1986, I know for sure that no biosolids we applied in the last 2 years, we do apply to airport ground that's inside the fence.

Rick Simons Operation Supervisor

PH 712-279-6171 Cell 712-490-3638 FAX 712-2796191 Email <u>rsimons@sioux-city.org</u>

CAUTION: This email originated from outside of Foth. Do not click on links or open attachments unless you recognize the sender and know the content to be safe.

Kalber, Elyse L

From: Moritz, Eva S

Sent: Thursday, July 25, 2024 9:41 AM

To: Kalber, Elyse L

Subject: FW: [External] FW: Runway property questions

Eva Moritz, PE Foth Infrastructure & Environment, LLC

From: Barrow, Julie < Julie.Barrow@rsandh.com>

Sent: Thursday, July 25, 2024 9:35 AM **To:** Moritz, Eva S < Eva. Moritz@foth.com>

Subject: [External] FW: Runway property questions

Hi Eva,

Responses for the questionnaire for the SUX Phase I.

Thanks! Julie

Julie Barrow

Environmental Specialist 4582 South Ulster Street, Suite 1100, Denver, CO 80237 O 303-409-7940 | M 408-858-4913 Julie.Barrow@rsandh.com rsandh.com | Facebook | Twitter | LinkedIn | Blog

Stay up-to-date with our latest news and insights.

From: Mike Collett < mcollett@sioux-city.org >

Sent: Thursday, July 25, 2024 6:44 AM

To: Christopher, Darren < <u>Darren.Christopher@rsandh.com</u>>; Barrow, Julie < <u>Julie.Barrow@rsandh.com</u>>

Subject: FW: Runway property questions

From: Jon Oehlerking < jonoehlerking@gmail.com >

Sent: Wednesday, July 24, 2024 7:51 PM

To: Mike Collett < mcollett@sioux-city.org >
Subject: Re: Runway property questions

CAUTION: This email originated from OUTSIDE of the organization. Please verify the sender and use caution if the message contains any attachments, links, or requests for information as this person may NOT be who they claim. If you are asked for your username and password, please call WCICC and DO NOT ENTER any data.

Question 1 100 years plus

- 2 Yes Farming
- 3 No
- 4 No
- 5 No
- 6 No
- 7 No

If You need anything else let me know Thanks Jon Oehlerking 712-253-4033

From: Mike Collett < mcollett@sioux-city.org Sent: Wednesday, July 24, 2024 2:19 PM

To: Mark Oehlerking <mark@oehlerking.net>; jonoehlerking@gmail.com <jonoehlerking@gmail.com>

Cc: Marty Dougherty < mdougherty@sioux-city.org >

Subject: Runway property questions

Jon- Please see the attached questionnaire we are requesting you complete as part of our runway project process. I also copied the questions below.

How long have you owned this property? Did you farm it prior to owning?

Is the land currently being farmed/what is the current use of the property?

To your knowledge, have biosolids ever been applied to the land? If so, how recently, and how frequently?

To your knowledge, have there been any structures or wells on the property?

To your knowledge, has it ever been grazed?

Has there been any chemical storage/mixing on property?

Has anything been buried on the property, that you know of?

Thanks, Mike

Mike Collett
Assistant City Manager
City of Sioux City
712 279-6408
mcollett@sioux-city.org

Mike

Attached are several question for the Oehlerking land owner to complete regarding the proposed 1 acre area. This can be emailed or I can call them if you prefer.

Darren.

Darren Christopher, PE

Senior Aviation Engineer 4525 Airport Approach Rd, Suite A, Duluth, MN 55811 O 218-722-1227 | M 218-343-9557 Darren.Christopher@rsandh.com rsandh.com | Facebook | Twitter | LinkedIn | Blog

Stay up-to-date with our latest news and insights.

CAUTION: This email originated from outside of Foth. Do not click on links or open attachments unless you recognize the sender and know the content to be safe.

Appendix F

Qualifications of the Environmental Professionals

Elyse Kalber

Elyse Kalber is an Environmental Scientist with a Bachelor of Science in Environmental Science from Drake University. Her experience includes formal training in Phase I site assessments, including completion of the ASTM Phase I Environmental Site Assessment Practices for Commercial Real Estate training. She has over two years of assessment of natural resources such as wetland delineation and threatened and endangered species and assisting design engineers in evaluating alternatives to minimize project impacts. She is also involved with stream bank restoration projects and wetland mitigation site monitoring.

Gina Wilming

Gina Wilming is a lead hydrogeologist and project manager with 17 years of environmental consulting experience. She has a Bachelor of Science in Environmental Science from the University of Iowa. Her technical experience includes Phase I and Phase II Environmental Site Assessments; due diligence site assessment/investigations; solid waste environmental compliance, monitoring, and reporting; site investigation/remediation; data management and statistics; evaluating and managing implementation of remedial alternatives; alternative source demonstrations; geochemical evaluations; permitting; construction administration; and public engagement.

Appendix E - Hazardous Materials	
	Appendix E.2
	Final Site Inspection Report

A۱	0	pen	dix	E -	Hazardous	Materia	ls
----	---	-----	-----	-----	-----------	---------	----

THIS PAGE INTENTIONALLY LEFT BLANK

March 7, 2019

Mr. Winston Crow NGB/A4OR Sheppard Hall 3501 Fetchet Avenue Joint Base Andrews, Maryland 20762-5157

REFERENCE: Contract W9133L-14-D-0007, Delivery Order 0011, FY17 Phase III

Regional Site Inspections for Perfluorinated Compounds at Multiple

Air National Guard Installations

SUBJECT: Final Site Inspection Report for Sioux City ANGB

Mr. Crow

Attached please find the above referenced document.

Should you have any questions, please contact me at 606.495.5149 or by email at vestm@leidos.com.

LEIDOS

Matthew B. Vest, PMP, PG

Matth B. Vest

Project Manager

cc: Mr. Keith Freihofer – NGB/A4OR Program Manager

Mr. Kevin Jacobson – 185ARW Environmental Manager

Ms. Naila Hosein - BB&E Surveillance and Oversight

Mr. Dan Cook - Iowa DNR Project Manager

Ms. Connie Samson - Leidos Program Manager

Mr. Selvam Arunachalam – Leidos Deputy Project Manager

Ms. Nancy Wahlquist - Leidos Project Controller

Leidos Project File

SITE INSPECTION REPORT FOR PERFLUOROOCTANE SULFONATE AND PERFLUOROOCTANOIC ACID AT SIOUX CITY AIR NATIONAL GUARD BASE SIOUX CITY, IOWA

185th Air Refueling Wing Sioux Gateway Airport/Colonel Bud Day Field Iowa Air National Guard Sioux City, Iowa

March 2019

SITE INSPECTION REPORT FOR PERFLUOROOCTANE SULFONATE AND PERFLUOROOCTANOIC ACID AT SIOUX CITY AIR NATIONAL GUARD BASE SIOUX CITY, IOWA

185th Air Refueling Wing Sioux Gateway Airport/Colonel Bud Day Field Iowa Air National Guard Sioux City, Iowa

March 2019

Contract Number W9133L-14-D-0007 Task Order Number 0011

Prepared for

Air National Guard Restoration Branch NGB/A4OR 3501 Fetchet Avenue Joint Base Andrews, Maryland 20762

Prepared by

Leidos 11951 Freedom Drive Reston, Virginia 20190

CONTENTS

FIGU	RES	S	V
EXEC	CUTIV	E SUMMARY E	ES-1
1.0	INTR 1.1 1.2	ODUCTIONPROJECTIVES AND SCOPEREGULATORY OVERVIEW AND SCREENING CRITERIA	. 1-1
2.0		ALLATION DESCRIPTIONLOCATION	.2 - 1
3.0	ENVI 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	RONMENTAL SETTING	.3-1 .3-1 .3-1 .3-1 .3-2
4.0	PREL 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	IMINARY ASSESSMENT PRL 1: BUILDING 252 – AEROSPACE GROUND EQUIPMENT PRL 2: BUILDING 261 – MAIN HANGAR PRL 3: BUILDING 241 – ANG PAINT FACILITY PRL 4: APRON PRL 5: BUILDING 286 – FIRE STATION PRL 6: BUILDING 284 – SECURITY FORCES PRL 7: NOZZLE TESTING LOCATION PRL 8: STORMWATER SEWER SYSTEM OUTFALL 1 PRL 9: STORMWATER SEWER SYSTEM OUTFALL 2	.4-1 .4-1 .4-2 .4-2 .4-2 .4-2
5.0	SITE : 5.1 5.2 5.3	INVESTIGATION FIELD PROGRAM	. 5-1 . 5-1 . 5-2 . 5-2 . 5-4
	5.4	5.3.1 Sampling Activities 5.3.2 Analytical Results PRL 2: BUILDING 261 – MAIN HANGAR 5.4.1 Sampling Activities 5.4.2 Analytical Results	. 5-4 . 5-5 . 5-5 . 5-6
	5.5	PRL 3: BUILDING 241 ANG PAINT FACILITY 5.5.1 Sampling Activities 5.5.2 Analytical Results	. 5-6

	5.6	PRL 4:	APRON	5-7	7
		5.6.1	Sampling Activities		
		5.6.2	Analytical Results		
	5.7		BUILDING 286 – FIRE STATION		
		5.7.1	Sampling Activities		
		5.7.2	Analytical Results	5-9)
	5.8		BUILDING 284 – SECURITY FORCES		
		5.8.1	Sampling Activities		
	<i>5</i> 0	5.8.2	Analytical Results		
	5.9	5.9.1	NOZZLE TESTING LOCATION		
		5.9.1	Sampling Activities		
	5.10		STORMWATER SEWER SYSTEM OUTFALL 1		
	5.10	5.10.1	Sampling Activities		
		5.10.2	Analytical Results		
	5.11		WATER SEWER SYSTEM OUTFALL 2		
		5.11.1	Sampling Activities		
		5.11.2	Analytical Results		
6.0	COM	OI HEIO	NS AND RECOMMENDATIONS		
0.0	6.1		USIONS		
	0.1	6.1.1	PRL 1: Building 252 – Aerospace Ground Equipment		
		6.1.2	PRL 2: Building 261 – Main Hangar		
		6.1.3	PRL 3: Building 241 – ANG Paint Facility		
		6.1.4	PRL 4: Apron		
		6.1.5	PRL 5: Building 286 – Fire Station		
		6.1.6	PRL 6: Building 284 – Security Forces		
		6.1.7	PRL 7: Nozzle Testing Location	6-3	3
		6.1.8	PRL 8: Stormwater Sewer System Outfall 1		
		6.1.9	PRL 9: Stormwater Sewer System Outfall 2		
		6.1.10	PFOS/PFOA Contamination Near Installation Boundary		
	6.2	SUMM	ARY AND RECOMMENDATIONS	6-3)
7.0	REFE	RENCE	S	7- 1	l
TABL	ES			T-1	1
FIGU	RES			F-	l
			L BORINGS AND WELL CONSTRUCTION LOGS		
			DUNDWATER SAMPLING LOGS		
			EVEY REPORT FOR NEW MONITORING WELLS		
			ΓA VALIDATION REPORTS	D-	L
APPE	NDIX	E LAP	ORATORY ANALYTICAL DATA REPORTS	F-1	ĺ

iv

TABLES

ES-1	PFOS/PFOA SI Screening Criteria	ES-2
ES-2	SI Recommendation Summary Table	
1	Preliminary Assessment Report Summary and Recommendations	T - 3
2	PFOS/PFOA SI Screening Criteria	T - 4
3	Summary of SI Activities	T - 4
4	Well Construction Details for Sioux City ANGB SI	T-5
5	Water Level Measurements	T - 5
6	Water Quality Parameters	T-6
7	Summary of Soil and Sediment Analytical Results	T-7
8	Summary of Groundwater and Surface Water Analytical Results	T-10
9	SI Recommendation Summary Table	T-11
	FIGURES	
	FIGURES	
1	Sioux City ANGB Location Map	F-3
2	Sioux City ANGB SI Sampling Overview Map	
3	PRLs 1, 2, 4, 5, 6, 7, and 8 SI Soil and Sediment Analytical Results	F-5
4	PRLs 3 and 9 SI Soil and Sediment Analytical Results	F-6
5	PRLs 1, 2, 3, 4, 5, 6, 7, 8, and 9 SI Groundwater and Surface Water Analytical Results	F-7

THIS PAGE INTENTIONALLY LEFT BLANK.

ACRONYMS

AFFF Aqueous Film-Forming Foam

AMSL Above Mean Sea level
ANG Air National Guard
ANGB Air National Guard Base
ARW Air Refueling Wing

BB&E, Inc.

BGS Below Ground Surface COC Chemical of Concern

COPC Chemical of Potential Concern
DoD U.S. Department of Defense
DQO Data Quality Objective

EPA U.S. Environmental Protection Agency ERP Environmental Restoration Program

FSS Fire Suppression System FTA Fire Training Area

GPS Global Positioning System

HA Health Advisory

HDPE High-Density Polyethylene HEF High Expansion Foam HO Hazard Ouotient

IDNR Iowa Department of Natural Resources

IDW Investigation-Derived Waste IRP Installation Restoration Program

mg/kg Milligrams per Kilogram

MS Matrix Spike

MSD Matrix Spike Duplicate
μg/kg Micrograms per Kilogram
μg/L Micrograms per Liter
NFA No Further Action
ng/L Nanograms per Liter
OWS Oil/Water Separator
PA Preliminary Assessment

PFAS Per- and Polyfluoroalkyl Substances

PFBS Perfluorobutane Sulfonate
PFHpA Perfluoroheptanoic Acid
PFHxS Perfluorohexane Sulfonate
PFNA Perfluorononanoic Acid
PFOA Perfluorooctanoic Acid
PFOS Perfluorooctane Sulfonate
PRL Potential Release Location

QA Quality Assurance QC Quality Control

QSM Quality Systems Manual
RI Remedial Investigation
RPD Relative Percent Difference
RSL Regional Screening Level

SI Site Inspection

TestAmerica Analytical Laboratories, Inc.

Third Unregulated Contaminant Monitoring Rule UCMR3 Uniform Federal Policy Quality Assurance Project Plan U.S. Fish and Wildlife Service **UFP-QAPP**

USFWS

U.S. Geological Survey **USGS**

Work Plan WP

EXECUTIVE SUMMARY

Leidos was contracted to conduct Phase III regional site inspections (SIs) for perfluorinated compounds at multiple Air National Guard Bases (ANGBs). This report documents SI activities conducted at nine potential release locations (PRLs) at the 185th Air Refueling Wing (ARW) of the Iowa Air National Guard (ANG) at Sioux Gateway Airport/Colonel Bud Day Field, Sioux City, Iowa. The primary objective of the SI was to determine the presence or absence of perfluorinated compounds, more specifically per- and polyfluoroalkyl substances (PFAS) on the U.S. Environmental Protection Agency (EPA) Third Unregulated Contaminant Monitoring Rule (UCMR3), including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorobutane sulfonate (PFBS), perfluorononanoic acid (PFNA), perfluoroheptanoic acid (PFHpA), and perfluorohexane sulfonate (PFHxS), herein collectively referred to as PFOS/PFOA, at each PRL and based on the following findings:

- Determine if PFOS/PFOA-contaminated groundwater has reached the Installation boundary;
- Provide a defensible no further action (NFA) decision for qualifying PRLs; and
- Develop data quality objectives (DQOs) for additional investigation for PRLs not meeting the NFA criteria or an interim response action, if appropriate.

To meet the objectives, Leidos performed SIs at the following nine PRLs:

- PRL 1: Building 252 Aerospace Ground Equipment,
- PRL 2: Building 261 Main Hangar,
- PRL 3: Building 241 ANG Paint Facility,
- PRL 4: Apron,
- PRL 5: Building 286 Fire Station,
- PRL 6: Building 284 Security Forces,
- PRL 7: Nozzle Testing Location,
- PRL 8: Stormwater Sewer System Outfall 1, and
- PRL 9: Stormwater Sewer System Outfall 2.

Based on recommendations from the February 2016 preliminary assessment (PA) that documented the site visit conducted by BB&E, Inc. (BB&E), soil, groundwater, sediment, and surface water samples were collected during the SI from nine PRLs (see Table 1). PRL 10 (Building 281 – Hazmart Pharmacy) and PRL 11 (Building 280 – Supply Warehouse) were recommended for NFA in the PA because no known releases of aqueous film-forming foam (AFFF) had occurred at the PRLs and the AFFF stored in these buildings were within secondary containment structures. Samples collected during the SI were analyzed for PFOS/PFOA compounds. The detected PFOS/PFOA concentrations were compared against screening criteria for PFOS, PFOA, and PFBS, including the applicable Iowa Department of Natural Resources (IDNR) action levels/statewide standards for soil and groundwater, EPA lifetime drinking water Health Advisory (HA) for PFOS and PFOA, the EPA Regional Screening Level (RSL) for PFBS in tap water, and calculated screening levels using the EPA screening level calculator for PFOS, PFOA, and PFBS in soil and sediment, as shown in Table ES-1.

PFOS/PFOA compounds were detected in the soil, groundwater, sediment, and surface water above the laboratory detection limits. Evaluation of groundwater and surface water results at sample locations adjacent to the Installation boundary (MW-SIO06-01, MW-SIO04-01, MW-SIO04-02, SIO08-SW1, MW-SIO07-01, MW-SIO03-01, SIO09-SW1) indicates PFOS/PFOA compounds are likely migrating offsite given their presence and magnitude near the Installation boundary.

Table ES-1. PFOS/PFOA SI Screening Criteria

Parameter	Chemical Abstract Service Number	EPA RSL for Tap Water ^a (ng/L)	EPA Health Advisory ^b (ng/L)	IDNR Action Level/Statewide Standards for Groundwater ^f (ng/L)	Residential Risk-based Soil Screening Level ^c (µg/kg)	IDNR Action Level/Statewide Standards for Soil ^f (µg/kg)
PFOS	1763-23-1	NA	70.0 ^d	70	1,260	1,800
PFOA	335-67-1	NA		70	1,260	1,200
PFBS	375-73-5	400,000 ^e	NA	NA	1,260,000	NA

^a EPA RSL for tap water at target HQ = 1, November 2018 (EPA 2018).

 μ g/kg = Micrograms per kilogram.

EPA = U.S. Environmental Protection Agency.

HQ = Hazard quotient.

IDNR = Iowa Department of Natural Resources.

NA = Not available.

ng/L = Nanograms per liter.

PFBS = Perfluorobutane sulfonate.

PFOA = Perfluorooctanoic acid.

PFOS = Perfluorooctane sulfonate.

RSL = Regional screening level.

SI = Site inspection.

Leidos recommends further investigations at all nine PRLs due to PFOS and PFOA compounds being detected in soil, groundwater, surface water, and sediment. Additional investigations are recommended for soil and groundwater at PRLs 1 through 7 and surface water/sediment at PRLs 8 and 9. The recommendations are summarized in Table ES-2 and described briefly below:

- Further investigation is necessary to determine the nature and extent of PFAS contamination due to detectable levels of PFOS/PFOA at the PRLs.
- Develop an expanded conceptual site model that considers localized groundwater and surface water flow paths to select future sampling locations.
- Complete the delineation of nature and extent of PFAS as part of an Expanded SI or a remedial investigation (RI) that could consist of:
 - Additional soil and sediment sampling and analysis of an expanded list of PFAS constituents (in addition to the six UCMR3 constituents) to determine if significant source areas related to precursor substances are present. Precursor substances have been demonstrated to oxidize into PFOS and PFOA, and thus could provide a lingering source of these compounds to soil and groundwater.
 - Expanded groundwater sampling program (including analysis of an expanded list of PFAS constituents) to complete horizontal and vertical delineation of the PFAS impacts. Further groundwater investigation at the Base boundary is recommended due to the presence of PFAS in groundwater above their respective screening criteria.
 - The installation and sampling of upgradient and downgradient off-Base monitoring wells to better define the upgradient source of PFAS as well as PFAS concentrations that have migrated off Base.

^b Drinking Water Health Advisory for Perfluorooctane Sulfonate (EPA 2016a) and Drinking Water Health Advisory for Perfluorooctanoic Acid (EPA 2016b).

^c Residential risk-based soil screening levels determined by using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search) and the November 2018 EPA RSL tables (https://epa.gov/risk/regional-screening-levels-rsls-generic-tables) for soil and sediment at target HQ = 1 (EPA 2018).

^d When PFOA and PFOS are both present, the combined detected concentrations of the compounds are compared with the 70-ng/L health advisory value.

e PFBS analytical results for groundwater and surface water have been compared to the tap water screening levels.

f 2016 IDNR action levels/statewide standards for PFOS and PFOA in soil and groundwater (IDNR 2016).

- The sampling of surface water and sediment at the Base as well as upgradient and downgradient off Base (including analysis of an expanded list of PFAS constituents) to better determine if an upgradient source of PFAS exists, as well as impacts of PFAS in surface water that have migrated off Base.
- Conduct preliminary site-specific risk assessment calculations in order to identify chemicals of potential concern (COPCs) in every medium and establish preliminary remedial goals for screening purposes.

DQOs are proposed based on the results of the SI and are presented in Table ES-2. In general, additional samples are required at each PRL in order to establish the nature and extent of PFAS constituents for each applicable medium and determine if a complete receptor pathway exists. For soil, additional samples are proposed to determine if a source area exists, and if so, to determine the vertical and horizontal extent for both the vadose and saturated zones. For groundwater, additional samples are proposed to quantify potential impacts from upgradient sources and assess the nature and extent of PFAS concentrations beyond the Base boundary. Additional surface water and sediment samples should be collected at PRLs 8 and 9 to further evaluate PFOS/PFOA concentrations in surface water and sediment.

Table ES-2. SI Recommendation Summary Table

PRL No.	PRL Description	Constituents Above Screening Criteria	Sampling Recommendations and Objectives
1	Building 252 – Aerospace Ground Equipment	Groundwater: PFOS, PFOA, PFOS + PFOA	Soil: Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists, and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.
			Groundwater: Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.
2	Building 261 – Main Hangar	Groundwater: PFOS, PFOA, PFOS + PFOA	Soil: Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists, and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.
			Groundwater: Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.
3	Building 241 – ANG Paint Facility	None	Soil: Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists, and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.
			Groundwater: Although screening criteria were not exceeded, determination of the nature and extent both vertically and horizontally of PFAS compounds should be completed through the sampling of existing and additional new monitoring wells.
4	Apron	Groundwater: PFOA, PFOS + PFOA	Soil: Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists, and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.
			Groundwater: Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.
5	Building 286 – Fire Station	Groundwater: PFOA, PFOS + PFOA	Soil: Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists, and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.
			Groundwater: Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.
6	Building 284 – Security Forces	Groundwater: PFOA, PFOS + PFOA	Soil: Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists, and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.
			Groundwater: Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.

Table ES-2. SI Recommendation Summary Table (continued)

PRL No.	PRL Description	Constituents Above Screening Criteria	Sampling Recommendations and Objectives
7	Nozzle Testing Location	None	Soil: Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists, and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.
			Groundwater: Although screening criteria were not exceeded, determination of the nature and extent both vertically and horizontally of PFAS compounds should be completed through the sampling of existing and additional new monitoring wells.
8	Stormwater Sewer System Outfall 1	None	Surface Water and Sediment : Although screening criteria were not exceeded, determine PFAS impact to surface water through upgradient sampling of surface water and sediment and evaluate potential downgradient impacts at locations off Base.
9	Stormwater Sewer System Outfall 2	Surface Water: PFOS + PFOA	Surface Water and Sediment: Determine PFAS impact to surface water through upgradient sampling of surface water and sediment and evaluate potential downgradient impacts at locations off Base.
General			Soil: Collect additional surface and subsurface soil samples to determine the nature and extent both vertically and horizontally of PFAS contamination. Analyze for an expanded list of PFAS compounds to evaluate for potential precursor compounds.
			Groundwater: (1) Collect additional groundwater samples in upgradient locations to quantify potential impacts from upgradient sources, and (2) collect additional groundwater samples off Base through the installation of a limited number of new monitoring wells to determine the nature and extent of PFAS beyond the Base boundary.
			Surface Water/Sediment: (1) Collect additional surface water and sediment samples in upgradient locations to quantify potential impacts from upgradient sources, and (2) collect additional surface water and sediment samples off Base to determine the nature and extent of PFAS beyond the Base boundary.

ANG = Air National Guard.

PFAS = Per- and polyfluoroalkyl substances. PFOA = Perfluorooctanoic acid.

PFOS = Perfluorooctane sulfonate.

PRL = Potential release location.

SI = Site inspection.

THIS PAGE INTENTIONALLY LEFT BLANK.

1.0 INTRODUCTION

Leidos has prepared this Site Inspection (SI) Report to satisfy the requirements of Task Order 0011 of National Guard Bureau Contract Number W9133L-14-D-0007. Under this Task Order, Leidos was contracted to conduct Phase III regional SIs for perfluorinated compounds at multiple Air National Guard Bases (ANGBs). This report documents SI activities conducted at nine potential release locations (PRLs) at the 185th Air Refueling Wing (ARW) of the Iowa Air National Guard (ANG) at Sioux Gateway Airport/Colonel Bud Day Field, Sioux City, Iowa, herein referred to as Sioux City ANGB, the Installation, or the Base (Figure 1). Note that all tables and figures are presented after Section 7. All field activities were conducted in accordance with the Work Plan for Fiscal Year 2017 Phase III Regional Site Inspections for Perfluorooctane Sulfonate and Perfluorooctanoic Acid at Sioux City Air National Guard Base, Sioux City, Iowa (Leidos 2018).

1.1 PROJECT OBJECTIVES AND SCOPE

The primary objective of the SI was to determine the presence or absence of perfluorinated compounds, more specifically per- and polyfluoroalkyl substances (PFAS) on the U.S. Environmental Protection Agency (EPA) Third Unregulated Contaminant Monitoring Rule (UCMR3), including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorobutane sulfonate (PFBS), perfluorononanoic acid (PFNA), perfluoroheptanoic acid (PFHpA), and perfluorohexane sulfonate (PFHxS), herein collectively referred to as PFOS/PFOA.

Surface and subsurface soil, groundwater, and surface water and sediment (if available) were sampled and analyzed to determine the presence or absence of PFOS/PFOA in environmental media at the PRLs identified in the 2016 preliminary assessment (PA) (BB&E 2016) and to:

- Determine if PFOS/PFOA-contaminated groundwater has reached the Installation boundary;
- Provide a defensible no further action (NFA) decision for qualifying PRLs; and
- Develop data quality objectives (DQOs) for additional investigation for PRLs not meeting the NFA criteria or an interim response action, if appropriate.

The scope of work consisted of three inter-related tasks: (1) prepare an SI Work Plan (WP), (2) conduct SI and data collection activities, and (3) evaluate data from the field effort and applicable historical information to present conclusions and recommendations in an SI Report.

All sampling was performed on ANG property, and only PRLs located on ANG property were included in the project scope. Sampling of drinking water sources (other than the on-Base potable water supply that was used for decontamination activities) was not included, and determination of nature and extent of any identified contamination was not within the scope of this SI.

Nine PRLs, as listed in Table 1 and depicted in Figure 2, were selected for SI activities based upon the PA site visit conducted by BB&E, Inc. (BB&E) in November 2015 and reported in the *Perfluorinated Compounds Preliminary Assessment Site Visit Report, 185th Air Refueling Wing, Iowa Air National Guard, Sioux City, Iowa* (BB&E 2016). PRL 10 (Building 281 – Hazmart Pharmacy) and PRL 11 (Building 280 – Supply Warehouse) were recommended for NFA in the PA because no known releases of aqueous film-forming foam (AFFF) had occurred at the PRLs and the AFFF stored in these buildings were within secondary containment structures. This SI Report briefly summarizes the PA, describes SI field activities at nine PRLs, presents analytical results of environmental sampling, and provides recommendations for each PRL.

1.2 REGULATORY OVERVIEW AND SCREENING CRITERIA

In 2012, EPA published the UCMR3, which required public water supplies across the country to sample for a list of 30 unregulated contaminants, including 6 chemicals of concern (COCs) relevant to this SI (PFOS, PFOA, PFBS, PFNA, PFHpA, and PFHxS; i.e., PFOS/PFOA). Results of UCMR3-required sampling indicated detections of PFOS/PFOA at numerous locations, including several near U.S. Department of Defense (DoD) facilities. PFOS/PFOA detections at DoD facilities are often linked to the use of AFFF, which may contain one or more of these chemicals. AFFF is a firefighting agent used to suppress fires involving petroleum hydrocarbons.

Detected concentrations of PFOS/PFOA in environmental samples collected during the Sioux City ANGB SI were compared against soil and water screening criteria for PFOS, PFOA, and PFBS, as described below and listed in Table 2.

The November 2018 EPA generic regional screening level (RSL) table (EPA 2018) lists a residential risk-based screening level for tap water for PFBS of 400 micrograms per liter (μg/L) (400,000 nanograms per liter [ng/L]; target hazard quotient [HQ] = 1.0). Currently, no legally enforceable federal standards exist for PFOS/PFOA in water. However, under the Safe Drinking Water Act, EPA issued a series of Health Advisories (HAs) for PFOS/PFOA, including the most recent in May 2016 (EPA 2016a and EPA 2016b). To provide Americans, including the most sensitive populations, with a margin of protection from a lifetime of exposure to PFOS/PFOA in drinking water, EPA established an HA level for PFOS + PFOA (combined) of 70 ng/L. The HA of 70 ng/L applies to PFOS and PFOA individually as well as combined. If an individual compound is detected >70 ng/L, the screening criteria is exceeded. However, if individual compounds are <70 ng/L but the sum of the compounds is >70 ng/L, the screening criteria are exceeded. For example, if PFOS = 50 ng/L and PFOA = 25 ng/L, the screening criteria are exceeded. Therefore, screening levels for groundwater and surface water are as follows:

- PFOS and PFOA = 70 ng/L; and
- PFBS = 400,000 ng/L.

No legally enforceable federal standards exist for PFOS/PFOA in soil or sediment. The November 2018 EPA generic RSL table lists a residential risk-based screening level for soil for PFBS of 1,300 milligrams per kilogram (mg/kg) (1,300,000 micrograms per kilogram [μ g/kg]; target HQ = 1.0) (EPA 2018). Following the process utilized at other ANG Installations around the country, Leidos will use residential risk-based screening levels for soil determined using the EPA RSL calculator and the November 2018 RSL tables (EPA 2018) based on an HQ of 1.0. The calculated screening value for PFBS is slightly less than the value listed in the generic RSL table. RSLs are only available for three of the six COCs listed above. The calculated screening levels for these three COCs are as follows:

- PFOS = 1,260 μ g/kg;
- PFOA = 1,260 μ g/kg; and
- PFBS = $1,260,000 \mu g/kg$.

The Iowa Department of Natural Resources (IDNR) has set action levels/statewide standards for soil and groundwater. The IDNR soil action level/statewide standard for PFOS is 1,800 μ g/kg and for PFOA is 1,200 μ g/kg. The IDNR groundwater action level/statewide standard for PFOS is 70 ng/L and for PFOA is 70 ng/L. No surface water or sediment screening criteria have been established by EPA or the IDNR at this time; however, the groundwater and soil screening levels will be used for surface water and sediment, respectively.

Leidos will use the IDNR action levels/statewide standards for PFOS and PFOA and EPA 2016 drinking water lifetime HA levels (PFOS and PFOA) of 70 ng/L and the most conservative residential risk-based screening level for tap water (PFBS) for groundwater and surface water screening.

Leidos will use the IDNR action levels/statewide standards and the most conservative residential risk-based soil screening levels determined using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search) and the November 2018 EPA RSL tables (https://epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2018) for soil and sediment. For PFOS and PFOA, Leidos will utilize the lower, more conservative screening value between the IDNR action levels/statewide standards and the residential risk-based soil screening levels determined for soil and sediment; therefore, the soil screening levels for PFOS and PFOA are 1,260 and 1,200 μg/kg, respectively.

THIS PAGE INTENTIONALLY LEFT BLANK.

2.0 INSTALLATION DESCRIPTION

THIS PAGE INTENTIONALLY LEFT BLANK.

3.0 ENVIRONMENTAL SETTING

3.1 CLIMATE

Sioux City ANG is located approximately 7 miles south of downtown Sioux City. The climate is humid continental climate with warm humid summers and cold dry winters. The average temperature of Sioux City is 48.6°F, which is roughly the same as the Iowa average temperature, and is slightly lower than the national average temperature of 54.50°F. Annual rainfall amounts in Sioux City are 28.23 in. with 52.5 days of 0.1 in. or more of precipitation. Average wind speed for the area is 18.7 miles per hour and is usually out of the south and southeast. Sioux City is located in a region that is subject to tornado activity (USA.com 2017).

3.2 TOPOGRAPHY

Sioux City ANGB is situated on a relatively flat alluvial plain with elevations ranging from approximately 1,085 to 1,094 ft above mean sea level (AMSL). The Installation is situated approximately 2 miles east of the Missouri River. Bluffs east and west of the Missouri River are typically 100 to 150 ft in height above average ground level, with an average elevation of 1,200 ft AMSL (Weston 2014).

3.3 GEOLOGY

Sioux City ANG is situated within the Missouri Alluvial Plain Physiographic Province. The alluvial sediments extend an average of 110 ft beneath the surface and consist of unconsolidated clay, silt, sand, and gravel. The underlying bedrock consists of Cretaceous sedimentary rocks that dip toward the northwest at approximately 4 ft per mile. The uppermost bedrock unit is Carlile Shale, a thinly laminated, calcareous marine shale with a minimum thickness in Iowa of approximately 80 ft. The shale formation is underlain by approximately 30 ft of Greenhorn Limestone, a fossiliferous, chalky, shale limestone. The Greenhorn Formation is underlain by the Dakota, which consists of an upper layer of interbedded shale, siltstone and sandstone, and a lower layer of sandstone. Paleozoic limestones, dolomites, shales, and sandstones underlie the Cretaceous formations described above. These formations slope toward the south-southeast at approximately 18 ft per mile, and they occur under Sioux City ANGB at approximately 737 ft below ground surface (BGS) (Weston 2014).

3.4 SOIL

The stratigraphy consists of clays from ground surface to approximately 10 ft BGS, silty sands from 10 to 25 ft BGS, and fine to coarse sands from 25 to at least 70 ft BGS. The sediments are alluvial deposits from the Pleistocene glacial melt-water and are part of the Missouri River alluvial plain (Montgomery Watson 2001). Soils identified during the Leidos SI typically consisted of silty clay, clay, and fine to medium sand.

3.5 SURFACE WATER HYDROLOGY

Sioux City ANGB is located approximately 2 miles east of the Missouri River, which flows south along the western border of Iowa. The Big Sioux and Floyd rivers join the Missouri River in the downtown area of Sioux City, upstream of Sioux City ANGB. The Missouri River and most of its natural surface water drainage tributaries within the floodplain have been channeled and straightened. Drainage ditches along most of the roads in the area collect highway and irrigation runoff for eventual discharge to the larger, channeled tributaries (Weston 2014).

Surface water flow at Sioux City ANGB is dictated by the Base's man-made surface drainage system. Surface water enters the ANGB mainly from meteoric precipitation, and surface discharge is to the Base storm sewer network and natural small area drainages (URS 2015).

3.6 HYDROGEOLOGY

The shallow aquifer associated with the Missouri River Valley is unconfined and composed of unconsolidated gravels, sands, silts, and clays. Variations in lithology may affect the formation of localized areas with confined or semi-confined conditions. Groundwater in the aquifer occurs from just below the ground surface in topographically low areas to approximately 20 ft BGS at higher elevations. The groundwater gradient is directed toward the Missouri River or its tributaries. The Dakota Aquifer, composed of the sandstones of the Dakota Formation, is confined by the shales within the Dakota Formation and other Cretaceous shales and limestones. The aquifer is approximately 75 ft thick beneath Sioux City ANGB, occurring at about 190 ft BGS, and extends across most of northwestern Iowa. Groundwater within the aquifer flows toward the southwest, along a hydraulic gradient of approximately 5 ft per mile (Weston 2014).

The Ordovician-Cambrian Aquifer exists beneath the Dakota Formation and is confined by overlying shales. This aquifer extends over the western area of Iowa. Additional localized aquifers may occur within the Paleozoic formations beneath the Ordovician-Cambrian Aquifer (Weston 2014).

The groundwater information collected from monitoring wells installed during the Leidos SI field activities showed a general flow of shallow groundwater to the southwest. Groundwater levels measured before purging and sampling monitoring wells during the SI indicate the depth to shallow groundwater ranged from 19.73 ft BGS in MW-SIO02-01 to 22.36 ft BGS in MW-SIO07-01. A localized groundwater high was observed at MW-SIO01-01 with a depth to water of 9.55 ft BGS.

3.7 CRITICAL HABITATS AND ENDANGERED/THREATENED SPECIES

According to the U.S. Fish and Wildlife Service (USFWS), the following federally listed threatened, endangered, or proposed species are known to or are believed to occur in Woodbury County, Missouri (USFWS 2017a):

- Fish:
 - o Pallid sturgeon (Scaphirhynchus albus) Endangered.
- Flowering plans:
 - o Prairie bush-cover (*Lespedeza leptostachya*) Threatened, and
 - Western prairie fringe orchid (*Platanthera praeclara*) Threatened.
- Mammals:
 - o Northern long-eared bat (*Myotis septentrionalis*) Threatened.
- Birds:
 - o Piping plover (Charadrius melodus) Threatened, and
 - o Least tern (*Sterna antillarum*) Endangered.

The potential for these species to occur in Woodbury County does not mean they are present at Sioux City ANGB.

The USFWS National Wetlands Inventory indicates the occurrences a 1.32-acre freshwater pond and several freshwater emergent wetlands and ravines at the Sioux Gateway Airport (USFWS 2017b). These locations are outside the Base boundary, and therefore, are not relevant to the site investigation.

3.8 WATER WELLS

The PA Report (BB&E 2016) indicates that a review of the EDR Radius Map™ Report with Geocheck® dated October 9, 2015, showed 189 wells within a 1-mile radius of the Base. Three wells were listed as U.S. Geological Survey (USGS) wells. No public water supply system was found within a 1-mile radius of the Base.

According to the Final Record of Decision for IRP Sites 1 through 5 (NGB/A70R 2013), no drinking water supply wells are currently located at the Base and the shallow groundwater system in the area of the Base is not used as the drinking water source. The nearest municipal water supply wells are located approximately 1 mile east of the Base, serving the city of Sergeant Bluff, Iowa. Sioux City obtains its potable water from groundwater wells drawing on the alluvial aquifer and the Dakota aquifer. These wells are located 1.5 miles west of the Base and 8 miles north of the Base. Several farms south of the Base obtain water from wells installed in the alluvial aquifer.

THIS PAGE INTENTIONALLY LEFT BLANK.

4.0 PRELIMINARY ASSESSMENT

In November 2015, BB&E conducted a PA site visit to identify potential sites of historical environmental releases of PFOS/PFOA related to AFFF usage and storage at Sioux City ANGB (BB&E 2016). The PA evaluated a total of 11 PRLs and recommended 9 of these for further investigation under an SI (Table 1; see also Figure 2). At the time of the PA, no documentation was available showing that soil, groundwater, sediment, and surface water at Sioux City ANGB were previously tested for PFOS/PFOA; therefore, these compounds could be present in media at any of these PRLs.

BB&E researched the potential existence of any documented FTAs or any other use or release of AFFF. The PA concluded that 9 of the 11 PRLs identified at the Base may have utilized AFFF based on years of operation. PRL 10 (Building 281 – Hazmart Pharmacy) and PRL 11 (Building 280 – Supply Warehouse) were recommended for NFA in the PA because no known releases of AFFF had occurred at the PRLs and the AFFF stored in these buildings were within secondary containment structures (see Table 1).

The PA site visit included onsite interviews with active and former personnel from the ANG Installation and other parties with relevant historical site knowledge. The sections below briefly describe the operational history and waste characteristics of the PRLs included in this SI, as presented in the PA Report (BB&E 2016). PRL numbers correspond to the area of concern designation used in the PA Report (BB&E 2016).

4.1 PRL 1: BUILDING 252 – AEROSPACE GROUND EQUIPMENT

The Aerospace Ground Equipment building (Building 252) was formerly the Fuel Cell Repair Hangar. The building was constructed in 1979, and previously utilized an AFFF fire suppression system. The system was removed when the Base's mission was changed in 2004. Facility personnel recalled two inadvertent system releases, although they had no recollection of when the releases occurred. The system was tested on average annually by releasing approximately 30 gal of foam. The foam would slowly drain into the building's trench drain, which discharges to the sanitary sewer via an oil/water separator (OWS). Facility personnel believed that excess foam would likely have been pushed out of the building to the apron southwest of the building and allowed to dissipate.

4.2 PRL 2: BUILDING 261 – MAIN HANGAR

The Main Hangar (Building 261) was constructed in approximately 1957. The hangar was previously equipped with an AFFF fire suppression system (FSS); however, it was converted to a high expansion foam (HEF) system in 2003. Facility personnel recalled two inadvertent releases of AFFF that partially filled the building with foam. One release occurred in the mid-1980s and one occurred in approximately 2000. The system was tested on average biannually by releasing approximately 30 gal of foam. The foam would slowly drain into the building's trench drain, which discharges to the sanitary sewer via an OWS. Facility personnel believed that excess foam was pushed out of the building onto the apron southwest of the building and allowed to dissipate.

4.3 PRL 3: BUILDING 241 – ANG PAINT FACILITY

The ANG Paint Facility was constructed in approximately 1953. The hangar is equipped with an AFFF FSS. The system was tested on average annually by releasing approximately 30 gal of foam. The foam would slowly drain into the building's trench drain, which discharges to the sanitary sewer via an OWS. Facility personnel believed that excess foam was pushed out of the building onto the apron north of the building and allowed to dissipate.

4.4 PRL 4: APRON

The concrete apron is the parking area for aircraft. For the most part, stormwater on the apron would flow in a southern direction and enter the stormwater conveyance system. The stormwater discharges to Stormwater Sewer System Outfall 1 (PRL 8). No known releases of AFFF were reported by the 185th ARW personnel; however, due to the nature of the use of the apron for aircraft operations, the potential exists that AFFF was used in the area.

4.5 PRL 5: BUILDING 286 - FIRE STATION

The Fire Station, Building 286, was constructed in 2006. Vehicles containing AFFF are stored in the engine bay of the Fire Station where they are also refilled with AFFF using an AFFF fill system. The overhead AFFF fill system includes an elevated storage 1,000-gal, single-walled tank with no secondary containment. In 2012, a leak of approximately 50 gal of AFFF discharged to the sanitary sewer via the trench drain. Following the release, each of the trench drains has been fitted with a plug. Other than the 2012 release, facility personnel only noted small drips. At the time of the PA site visit, it was reported that vehicle washing typically occurs inside the Fire Station; however, vehicle washing occasionally occurs on concrete southwest of the overhead doors.

4.6 PRL 6: BUILDING 284 – SECURITY FORCES

The Security Forces Building was the former Fire Station until 2006. The building was constructed in 1989 and was owned by Sioux City until approximately 2003, when it was transferred to ANG. Vehicles containing AFFF were stored and refilled inside the building. Trench drains were located inside the building in the apparatus bays and removed when it was remodeled. According to Fire Station personnel, minor releases of AFFF likely occurred during filling of equipment.

4.7 PRL 7: NOZZLE TESTING LOCATION

The fire department conducted nozzle testing at the paved area southwest of Building 286 and southwest of the overhead doors at Building 284. Foam was allowed to dissipate. Typically 3 to 4 gal of AFFF per vehicle were discharged once per month.

4.8 PRL 8: STORMWATER SEWER SYSTEM OUTFALL 1

According to the 185th ARW Industrial Storm Water Management Guidance Manual, the 185th ARW property is composed of 11 drainage areas. Drainage areas 1 through 10 discharge at several locations along the main storm sewer whose eventual outlet is located at Stormwater Sewer System Outfall 1, which discharges to a ditch along Harbor Drive.

4.9 PRL 9: STORMWATER SEWER SYSTEM OUTFALL 2

According to the 185th ARW Industrial Storm Water Management Guidance Manual, the 185th ARW property is composed of 11 drainage areas. Drainage area 11, which encompasses the ANG Paint Facility (PRL 3), discharges to a single outlet at Stormwater Sewer System Outfall 2, which then discharges to a ditch along Perimeter Road

5.0 SITE INVESTIGATION FIELD PROGRAM

This section summarizes the SI field activities, including soil, groundwater, surface water, and sediment sampling, at Sioux City ANGB. Analytical results for each PRL are presented and identify the presence or absence of PFOS/PFOA and results for PFOS, PFOA, and PFBS that exceed the screening criteria shown in Table 2 and described in Section 1.2 of this SI Report.

SI field activities were conducted between September 26 and October 1, 2018, and October 9 and 10, 2018. All sampling and analytical activities were conducted in accordance with the procedures specified in the SI WP (Leidos 2018), except as noted in Section 5.1.2. Boring logs and monitoring well construction logs are provided in Appendix A, and groundwater sampling logs are provided in Appendix B. The groundwater monitoring well survey report is included in Appendix C. The data validation report is provided in Appendix D. The full data package is provided in Appendix E.

5.1 GENERAL APPROACH

5.1.1 Field Sampling

SI field activities included the following:

- Surface and subsurface soil sampling;
- Water level measurements from temporary piezometers at Sioux City ANGB to confirm local groundwater flow direction;
- Installation and sampling of groundwater from new monitoring wells located downgradient from the PRLs and/or at the Installation boundary;
- Sediment and surface water sampling (if available); and
- A global positioning system (GPS) survey of soil borings, sediment, and surface water locations (the horizontal location and elevation of all newly installed wells were surveyed by a professional licensed surveyor).

Soil, groundwater, sediment, and surface water sampling locations were based on known historical or potential releases and site conditions as observed during the PA. Table 3 summarizes the SI sampling activities at Sioux City ANGB. Figure 2 shows an overview of the Sioux City ANGB SI sample locations. Prior to intrusive activities, an underground utility locator marked and cleared all boring locations.

A total of 17 soil borings were installed. Borings were installed in grassy areas near known or likely discharges/spills, the nozzle testing area, near the concrete apron, the paint facility, the main hangar, and in the vicinity of the current and former fire stations. The borings were drilled using a track-mounted direct-push drilling system to first water. Soil borings were logged for soil lithology. Boring logs are included in Appendix A. Two grab soil samples were collected from each boring—one from within the 0- to 2-ft BGS interval and one from within the 2-ft interval immediately above the water table.

All soil samples were screened by a photoionization detector as a health and safety precaution. Following collection of soil samples, boreholes not co-located with monitoring wells were abandoned by backfilling with bentonite. Holes were capped with soil flush to the surface.

Water level measurements from the 2018 SI indicate the inferred flow of shallow groundwater at the Base is generally to the southwest. Groundwater samples were collected from seven newly installed permanent monitoring wells. The new monitoring wells were developed and sampled following ANG guidance, as prescribed in the SI WP (Leidos 2018).

Sediment and surface water sampling locations were based on the presence of drainage ditches or stormwater outfalls. One sediment and one surface water sample were collected within the Installation boundary at the drainage ditch associated with Outfall 1 (PRL 8) and from a drainage ditch that captures flow associated with Outfall 2 (PRL 9). Additional details on the field activities for each PRL are provided in Section 5.3.

5.1.2 Deviations from the Work Plan

Deviations from the SI WP during field activities included the following:

• Water quality measurements and GPS coordinates for surface water sample SIO09-SW1-01 were inadvertently not gathered during sample collection. The location of this sample is inferred from aerial photography where the drainage ditch can be seen below Outfall 2 and south of Perimeter Road (Figure 2).

5.1.3 Data Analysis

5.1.3.1 Laboratory

Environmental samples were submitted to TestAmerica Analytical Laboratories, Inc. (TestAmerica), in West Sacramento, California. TestAmerica is accredited under the DoD Environmental Laboratory Accreditation Program and maintains a National Environmental Laboratory Accreditation Program certification.

5.1.3.2 Screening criteria

Analytical data for three of the six PFOS/PFOA compounds (PFOS, PFOA, PFBS) were compared to appropriate HA or screening criteria (Section 1.2 and Table 2) to determine whether further investigation is required. No HA or screening criteria currently exist for PFHpA, PFHxS, or PFNA.

5.1.3.3 Data validation

A Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP) was developed for this project as Appendix A of the SI WP (Leidos 2018). The UFP-QAPP was written to apply to all 15 Installations included in the scope of the Phase III SI contract. Specifics on the number and type of samples to be collected in characterizing the site, and the number and type of quality assurance/quality control (QA/QC) samples to be used to evaluate the quality of the data obtained, were included in the SI WP. Soil and sediment were collected in one 4-oz. high-density polyethylene (HDPE) container with an HDPE cap.

Groundwater and surface water samples were collected in two 250-mL HDPE containers with HDPE caps. The following samples were collected during the Sioux City ANGB SI sampling conducted in September and October 2018:

- Thirty-four soil samples,
- Two sediment samples,
- Seven groundwater samples,
- Two surface water samples,
- Four soil field duplicate samples,
- One groundwater field duplicate sample,
- Five matrix spike/matrix spike duplicate (MS/MSD) pairs,
- Seven equipment rinsates,
- Two field blanks, and
- One reagent blank.

The results of the data quality evaluation indicate that the overall quality of the data enables its use to confirm the presence or absence of contamination. Through data verification, validation, and review, the analytical information has been qualified as appropriate. Data are considered usable if results are unqualified or qualified as estimated. For groundwater and surface, 100% of the data was considered usable. For sediment and soil, 100% of the data was considered usable. The overall quality of the data meets or exceeds the established project objectives.

Quality Control

Five field duplicate samples were collected, including four for soil and one for groundwater. Field duplicate analytical results were consistent with their associated parent samples with the exception of three relative percent difference (RPD) values >50%. Data are not qualified on the basis of field duplicate results alone, since the *Contract Laboratory Program National Functional Guidelines for Organic Data Review* (EPA 1999), and DoD Quality Systems Manual (QSM) Version 5.1 (DoD 2017) do not include control limits for field duplicate RPD values. Five MS/MSD pairs, four for soil and one for water, were collected. The MS/MSD results are discussed in the "PFOS/PFOA" section of this data quality assessment.

Seven equipment rinsate samples (one for groundwater and six for soil) were collected and analyzed for PFOS/PFOA. Equipment blanks were free from contamination with the exception of PFNA in sample ER-05 for soils. Associated sample results were either above the equipment blank action level or not detected and no further qualification was required. Field blank samples FB-01 and FB-02 were collected from a deionized water source and potable water source, respectively, and analyzed for PFOS/PFOA. Field blank sample FB-02 contained PFBS, PFHpA, PFHxS, PFOA, and PFOS at low estimated concentrations; however, no qualifications were required due to the final rinse with deionized water. Field blank sample FB-01 was free from contamination. Note that decontamination procedures were followed in the field, including washing with laboratory grade, non-phosphate detergent; rinsing with potable water; final rinsing with deionized, analyte free water; and air drying. For these reasons, SI data quality was not impacted by cross-contamination during the field sampling process. One reagent blank was collected and analyzed for PFOA/PFOS. All results were non-detect for the reagent blank sample.

PFOS/PFOA

Some PFOS/PFOA compounds were qualified as estimated due to minor QC outliers. One PFBS result in sample MW-SIO07-01-01DL was qualified as estimate due to a high surrogate recovery. PFOS in parent

sample SIO02-SB2-01 was qualified as estimated (J) due to MS/MSD percent recovery outliers. PFNA was qualified as estimated (J) in sample ER-05 due to a laboratory control sample percent recovery outlier. PFOS in sample SIO03-SB3-01DL was qualified as estimated (J) due to internal standard recovery outliers. PFHxS was qualified as non-detect (U) in the field reagent blank sample due to continuing calibration blank contamination. No other QC outliers resulted in qualification of the data during the data validation process.

Except as noted above, data produced for this investigation demonstrate that it can withstand scientific scrutiny; are appropriate for its intended purpose; are technically defensible; and are of known and acceptable sensitivity, precision, and accuracy. Data integrity has been documented through proper implementation of QA and QC measures. The environmental information presented has an established confidence that allows utilization for the project objectives and provides data for future needs.

5.2 INVESTIGATION-DERIVED WASTE

Investigation-derived waste (IDW) was managed in compliance with the SI WP (Leidos 2018). Thirteen drums of non-hazardous soil IDW, seven drums of non-hazardous water IDW, and one drum of non-hazardous plastics and sediment from the decontamination pad were transported to a designated drum staging area located onsite. Two IDW samples (one aqueous and one solid) were collected for this event, and the IDW sample results in conjunction with the PFOS/PFOA results and historical site process knowledge will be used for characterization of generated IDW. Following approval of the waste profile, the IDW drums will be transported to a permitted offsite facility for disposal.

5.3 PRL 1: BUILDING 252 – AEROSPACE GROUND EQUIPEMENT

Two soil borings (SIO01-SB1, SIO01-SB2) and one groundwater monitoring well (MW-SIO01-01) were installed and sampled to evaluate PRL 1. MW-SIO01-01 was co-located with SIO01-SB1.

5.3.1 Sampling Activities

5.3.1.1 Soil

Two soil borings were installed on September 29, 2018, to evaluate PRL 1. The soil borings were installed in grassy areas between Building 252 and the Apron (Figure 3). The soil borings were advanced using a direct-push drilling system to a total depth of 30 ft BGS at SIO01-SB1 and 25 ft BGS at SIO01-SB2. Soil lithology descriptions were logged on the soil boring logs (Appendix A). A total of four soil samples were collected and analyzed for PFOS/PFOA.

5.3.1.2 Groundwater

MW-SIO01-01 was drilled on September 29, 2018. Well construction details are shown in Table 4. The well construction diagram is included in Appendix A.

MW-SIO01-01 was developed on September 30, 2018, and sampled on October 10, 2018. Water levels are shown in Table 5, and water quality parameters are shown in Table 6. Groundwater sample MW-SIO01-01-01 was collected and analyzed for PFOS/PFOA. The Groundwater Micro Purge Sheet and Groundwater Micro Purge Log are included in Appendix B.

Monitoring well MW-SIO01-01 was surveyed by a licensed surveyor, and the well survey report is included in Appendix C.

5.3.2 Analytical Results

5.3.2.1 Soil

Four soil samples were collected and analyzed from PRL 1, as described in Section 5.3.1. PFOS and PFHxS were detected above the laboratory detection limits in both surface soil samples collected at 0 to 2 ft BGS. PFOA, PFHpA, and PFNA were detected above the laboratory detection limits in SIO01-SB1-01. PFBS was detected above the laboratory detection limits in SIO01-SB2-01. No screening criteria exist for PFNA, PFHpA, or PFHxS. PFBS, PFOS, and PFOA concentrations did not exceed the soil screening criteria.

Two subsurface soil samples were collected at 16 to 18 ft BGS (SIO01-SB1-02) and 5 to 7 ft BGS (SIO01-SB2-02). Five of six PFOS/PFOA compounds (except PFNA) were detected above laboratory detection limits in SIO01-SB1-02 and PFOS, PFHxS, and PFNA were detected above the laboratory detection limits in SIO01-SB2-02. No screening criteria exist for PFNA, PFHpA, or PFHxS. PFBS, PFOS, and PFOA concentrations did not exceed the soil screening criteria. Soil analytical results for PRL 1 are presented in Table 7 and shown in Figure 3.

5.3.2.2 Groundwater

One groundwater sample was collected from MW-SIO01-01 and analyzed as described in Section 5.3.1. All six PFOS/PFOA compounds were detected above laboratory detection limits. No screening criteria exist for PFHxS, PFHpA, or PFNA. PFBS concentrations did not exceed the RSL of 400,000 ng/L. PFOS and PFOA exceeded the 70-ng/L EPA drinking water HA (EPA 2016a and 2016b) and IDNR action level at 1,300 and 350 ng/L. The combined PFOS+ PFOA concentration at MW-SIO01-01 (1,650 ng/L) exceeds screening criteria. Groundwater analytical results for PRL 1 are presented in Table 8 and shown in Figure 5.

5.4 PRL 2: BUILDING 261 – MAIN HANGAR

Two soil borings (SIO02-SB1, SIO02-SB2) and one groundwater monitoring well (MW-SIO02-01) were installed and sampled to evaluate PRL 2. MW-SIO02-01 was co-located with SIO02-SB1.

5.4.1 Sampling Activities

5.4.1.1 Soil

Two soil borings were installed on September 29, 2018, to evaluate the soil at PRL 2. The soil borings were installed within the grassy areas between Building 261 and the Apron (Figure 3). The soil borings were advanced using a direct-push drilling system to a total depth of 25 ft BGS. Soil lithology descriptions were logged on the soil boring logs (Appendix A). A total of four soil samples were collected and analyzed for PFOS/PFOA.

5.4.1.2 Groundwater

MW-SIO02-01 was drilled on September 29, 2018. Well construction details are shown in Table 4. The well construction diagram is included in Appendix A.

MW-SIO02-01 was developed on September 30, 2018, and sampled on October 10, 2018. Water levels are shown in Table 5, and water quality parameters are shown in Table 6. Groundwater sample MW-SIO02-01-01 was collected and analyzed for PFOS/PFOA. The Groundwater Micro Purge Sheet and Groundwater Micro Purge Log are included in Appendix B.

Monitoring wells MW-SIO02-01 was surveyed by a licensed surveyor, and the well survey report is included in Appendix C.

5.4.2 Analytical Results

5.4.2.1 Soil

Four soil samples were collected from SIO02-SB1 and SIO02-SB2 and analyzed as described in Section 5.4.1. PFHpA, PFHxS, PFOS, and PFOA were detected above the laboratory detection limits in both surface soil samples collected at 0 to 2 ft BGS. PFBS was detected at SIO02-SB1-01 at a concentration above the laboratory detection limit but was not detected at SIO02-SB2-01. PFNA was not detected in either of the surface soil samples. No screening criteria exist for PFHpA or PFHxS. PFBS, PFOS, and PFOA concentrations did not exceed the soil screening criteria.

Two subsurface soil samples were collected at 16 to 18 ft BGS (SIO02-SB1-02, SIO02-SB2-02). PFHpA, PFHxS, and PFOA concentrations were detected above the laboratory detection limits in both samples. PFOS and PFBS were detected at SIO02-SB1-02 above the laboratory detection limits but were not detected at SIO02-SB2-02. PFNA was not detected in either of the subsurface soil samples. No screening criteria exist for FPHpA or PFHxS. PFBS, PFOS, and PFOA concentrations did not exceed the soil screening criteria. PRL 2 soil analytical results are presented in Table 7 and shown in Figure 3.

5.4.2.2 Groundwater

One groundwater sample was collected from MW-SIO02-01 and analyzed as described in Section 5.4.1. All six PFOS/PFOA compounds were detected above laboratory detection limits. No screening criteria exist for PFHxS, PFHpA, or PFNA. PFBS concentrations did not exceed the RSL of 400,000 ng/L. PFOS and PFOA exceeded the 70-ng/L EPA drinking water HA (EPA 2016a and 2016b) and IDNR action level at 7,800 and 810 ng/L. The combined PFOS+PFOA concentration at MW-SIO02-01 (8,610 ng/L) exceeds screening criteria. This is the maximum combined concentration of PFOS+PFOA at Sioux City ANGB. Groundwater analytical results for PRL 2 are presented in Table 8 and shown in Figure 5.

5.5 PRL 3: BUILDING 241 ANG PAINT FACILITY

Three soil borings (SIO03-SB1, SIO03-SB2, SIO03-SB3) and one groundwater monitoring well (MW-SIO03-01) were installed and sampled to evaluate PRL 3. MW-SIO03-01 was also used to evaluate PFOS/PFOA concentrations near the Installation boundary. As shown in Figure 2, PRL 3 is separated from the PRLs to the north by the airport runway.

5.5.1 Sampling Activities

5.5.1.1 Soil

Three soil borings were installed on September 26, 2018, to evaluate PRL 3. Soil borings SIO03-SB1 and SIO03SB-2 were installed in the grassy area to the north of Building 241 on either side of the concrete pavement and soil boring SIO01-SB3 was installed in the grassy area to the south of Building 241 (Figure 4). The soil borings were advanced using a direct-push drilling system to total depths of 24 ft BGS (SIO03-SB2) or 25 ft BGS (SIO03-SB1, SIO03-SB3). Soil lithology descriptions were logged on the soil boring logs (Appendix A). A total of seven soil samples (including one field duplicate) were collected and analyzed for PFOS/PFOA.

5.5.1.2 Groundwater

MW-SIO03-01 was drilled on September 26, 2018. Well construction details are shown in Table 4. The well construction diagram is included in Appendix A.

MW-SIO03-01 was developed on September 30, 2018, and sampled on October 10, 2018. Water levels are shown in Table 5, and water quality parameters are shown in Table 6. Groundwater sample MW-SIO03-01-01 was collected and analyzed for PFOS/PFOA. The Groundwater Micro Purge Sheet and Groundwater Micro Purge Log are included in Appendix B.

Monitoring well MW-SIO03-01 was surveyed by a licensed surveyor, and the well survey report is included in Appendix C.

5.5.2 Analytical Results

5.5.2.1 Soil

Seven soil samples (including one field duplicate) were collected and analyzed from PRL 3, as described in Section 5.5.1. The three surface soil samples (0 to 2 ft BGS) indicate five of six PFOS/PFOA compounds (PFOS, PFOA, PFHpA, PFHxS, PFNA) were detected above the laboratory detection limits in each of the samples collected. PFBS also was detected above the laboratory detection limit in SIO03-SB3-01. No screening criteria exist for PFNA, PFHxS, or PFHpA. PFOS, PFOA, and PFBS concentrations did not exceed the soil screening criteria in surface soil at any of the sample locations.

Four subsurface soil samples (including one field duplicate sample at SIO03-SB3-02) were collected at 15 to 17 ft BGS (SIO03-SB1-02, SIO03-SB2-02, SIO03-SB3-02). Five of six PFOS/PFOA compounds (PFOS, PFOA, PFHpA, PFHxS, PFNA) were detected above the laboratory detection limits in each of the samples collected. PFBS also was detected above the laboratory detection limit in SIO03-SB3-01-02 (both primary and duplicate samples). No screening criteria exist for PFNA, PFHxS, or PFHpA. PFOS, PFOA, and PFBS concentrations did not exceed the soil screening criteria in subsurface soil at any of the sample locations. Soil analytical results for PRL 3 are presented in Table 7 and shown in Figure 4.

5.5.2.2 Groundwater

One groundwater sample was collected from MW-SIO03-01 and analyzed as described in Section 5.5.1. All six PFOS/PFOA compounds were detected above laboratory detection limits. No screening criteria exist for PFHxS, PFHpA, or PFNA. PFBS concentrations did not exceed the RSL of 400,000 ng/L. PFOS and PFOA did not exceeded the 70-ng/L EPA drinking water HA (EPA 2016a and 2016b) or IDNR action level at 14 and 34 ng/L. The combined PFOS+PFOA concentration at MW-SIO03-01 (48 ng/L) does not exceed screening criteria. Groundwater analytical results for PRL 3 are presented in Table 8 and shown in Figure 5.

5.6 PRL 4: APRON

Three soil borings (SIO04-SB1, SIO04-SB2, SIO04-SB3) and two groundwater monitoring wells (MW-SIO04-01, MW-SIO04-02) were installed and sampled to evaluate PRL 4 and are located near the Installation boundary. MW-SIO04-01 was co-located with SIO04-SB1 and MW-SIO04-02 was co-located with SIO04-SB2.

5.6.1 Sampling Activities

5.6.1.1 Soil

Three soil borings were installed on September 27 through 29, 2018, to evaluate PRL 4. Soil borings SIO04-SB1 and SIO04-SB2 were installed in the grassy areas southwest of the Apron and soil boring SIO04-SB3 was installed in the grassy area off the east of the Apron facing Perimeter Road (Figure 3). The soil borings were advanced using a direct-push drilling system to a total depth of 30 ft BGS (SIO04-SB1) or 25 ft BGS (SIO04-SB2, SIO04-SB3). Soil lithology descriptions were logged on the soil boring logs (Appendix A). A total of seven soil samples were collected and analyzed for PFOS/PFOA.

5.6.1.2 Groundwater

MW-SIO04-01 was drilled on September 27, 2018, and MW-SIO4-02 was drilled on September 28, 2018. Well construction details are shown in Table 4. The well construction diagrams are included in Appendix A.

MW-SIO04-01 and MW-SIO04-02 were developed on October 1, 2018, and sampled on October 9, 2018. Water levels are shown in Table 5, and water quality parameters are shown in Table 6. Groundwater samples MW-SIO04-01-01, MW-SIO04-02-01, and MW-SIO04-02-01D (a field duplicate) were collected and analyzed for PFOS/PFOA. The Groundwater Micro Purge Sheet and Groundwater Micro Purge Log are included in Appendix B.

Monitoring wells MW-SIO04-01 and MW-SIO04-02 were surveyed by a licensed surveyor, and the well survey report is included in Appendix C.

5.6.2 Analytical Results

5.6.2.1 Soil

Seven soil samples were collected and analyzed from PRL 4, as described in Section 5.6.1. Four surface soil samples were collected (including one field duplicate sample at SIO04-SB2-01). Three of six PFOS/PFOA compounds (PFOS, PFBS, PFHxS) were detected above the laboratory detection limits in SIO04-SB1-01 and three of six PFOS/PFOA compounds (PFOS, PFHpA, PFHxS) were detected above the laboratory detection limits in SIO04-SB3-01. All six PFOS/PFOA compounds were detected above the laboratory detection limits in SIO04-SB2-01, although PFNA was detected in the duplicate sample only. No screening criteria exist for PFNA, PFHxS, or PFHpA. PFBS, PFOS, and PFOA concentrations did not exceed the soil screening criteria at any of the surface soil sample locations.

Three subsurface soil samples were collected at 16 to 18 ft BGS (SIO04-SB1-02) and 10 to 12 ft BGS (SIO04-SB2-02, SIO04-SB3-02). No PFOS/PFOA compounds were detected above the laboratory detection limits in any of the subsurface soil samples. PRL 4 soil analytical results are presented in Table 7 and shown in Figure 3.

5.6.2.2 Groundwater

One groundwater sample was collected from MW-SIO04-01 and two groundwater samples (including a field duplicate) were collected from MW-SIO04-02 and analyzed as described in Section 5.6.1. Five of six PFOS/PFOA compounds were detected above laboratory detection limits in the primary sample from MW-SIO04-01 and both the primary and duplicate samples from MW-SIO04-02. PFNA was not detected above the laboratory detection limits. No screening criteria exist for PFHxS or PFHpA. PFBS

concentrations did not exceed the RSL of 400,000 ng/L and PFOS did not exceed the 70-ng/L EPA drinking water HA (EPA 2016a and 2016b) or IDNR action level in any of the groundwater samples. In MW-SIO04-01, PFOA exceeded the 70-ng/L EPA drinking water HA (EPA 2016b) and IDNR action level at 250 ng/L. The combined PFOS+PFOA concentration (260 ng/L) exceeds screening criteria. In MW-SIO4-02, PFOA exceeded the 70-ng/L EPA drinking water HA (EPA 2016b) and IDNR action level at 180 ng/L in the primary sample and 190 ng/L in the duplicate sample. The combined PFOS+PFOA concentration (194 ng/L in the primary sample and 204 ng/L in the duplicate sample) exceeds screening criteria. Groundwater analytical results for PRL 4 are presented in Table 8 and shown in Figure 5.

5.7 PRL 5: BUILDING 286 – FIRE STATION

Three soil borings (SIO05-SB1, SIO05-SB2, SIO05-SB3) were installed and sampled to evaluate PRL 5. PRL 5 is co-located with PRLs 6 and 7, and the groundwater samples from monitoring wells at PRL 6 and PRL 7 will be used to evaluate PFOS/PFOA in groundwater at PRL 5.

5.7.1 Sampling Activities

5.7.1.1 Soil

Three soil borings were installed on September 25, 2018, to evaluate PRL 5. The soil borings were installed in the grassy area to the southwest of Building 286 (Figure 3). The soil borings were advanced using a direct-push drilling system to total depths of 25 ft BGS. Soil lithology descriptions were logged on the soil boring logs (Appendix A). A total of seven soil samples were collected and analyzed for PFOS/PFOA.

5.7.1.2 Groundwater

The groundwater at PRL 5 is co-located with PRLs 6 and 7. Groundwater sampling activities for PRLs 6 and 7 are discussed in Sections 5.8.1 and 5.9.1.

5.7.2 Analytical Results

5.7.2.1 Soil

Seven soil samples were collected and analyzed from PRL 5, as described in Section 5.7.1. The three surface soil samples (0 to 2 ft BGS) indicated five of six PFOS/PFOA compounds (except PFNA) were detected above the laboratory detection limits in SIO05-SB1-01 and SIO05-SB2-01. All six PFOS/PFOA compounds were detected in SIO05-SB3-01. No screening criteria exist for PFHxS, PFHpA, or PFNA. PFBS, PFOS, and PFOA concentrations did not exceed the soil screening criteria in surface soil at any of the sample locations.

Four subsurface soil samples were collected (including one field duplicate sample at SIO05-SB3-02) at 15 to 17 ft BGS (SIO5-SB1-02, SIO05-SB2-02, SIO05-SB2-03). No PFOS/PFOA compounds were detected in SIO05-SB2-02 and only PFHxS was detected at a concentration above the laboratory detection limit in SIO05-SB1-01. All six PFOS/PFOA compounds were detected in SIO05-SB3-02 (primary and duplicate samples). No screening criteria exist for PFHxS, PFHpA, or PFNA. PFBS, PFOS, and PFOA concentrations did not exceed the soil screening criteria in subsurface soil at any of the sample locations. Soil analytical results for PRL 5 are presented in Table 7 and shown in Figure 3.

5.7.2.2 Groundwater

The groundwater at PRL 5 is co-located with PRLs 6 and 7. One groundwater sample was collected from MW-SIO06-01 and one groundwater sample was collected from MW-SIO07-01. The samples were analyzed as described in Sections 5.8.1 and 5.9.1, respectively. All six PFOS/PFOA compounds were detected above the laboratory detection limits in both samples. No screening criteria exist for PFHxS, PFHpA, or PFNA. PFBS concentrations did not exceed the RSL of 400,000 ng/L. The concentrations of PFOS were 45 ng/L (MW-SIO06-01) and 12 ng/L (MW-SIO07-01) and do not exceed the 70-ng/L EPA drinking water HA (EPA 2016a) or IDNR action level. The concentration of PFOA (77 ng/L) at MW-SIO06-01 does exceed the 70-ng/L EPA drinking water HA (EPA 2016b) and IDNR action level; however, the concentration of PFOA (2.1 ng/L) at MW-SIO07-01 does not. The combined PFOS+PFOA concentration at MW-SIO06-01 (122 ng/L) exceeds screening criteria; however, the combined PFOS+PFOA concentration at MW-SIO07-01 (14.1 ng/L) does not. Groundwater analytical results for MW-SIO06-01 and MW-SIO07-01 are presented in Table 8 and shown in Figure 5.

5.8 PRL 6: BUILDING 284 – SECURITY FORCES

Two soil borings (SIO06-SB1, SIO06-SB2) and one groundwater monitoring well (MW-SIO06-01) were installed and sampled to evaluate PRL 6. MW-SIO06-01 was co-located with SIO06-SB1 and also used to evaluate PFOS/PFOA concentrations near the Installation boundary.

5.8.1 Sampling Activities

5.8.1.1 Soil

Two soil borings were installed on September 25 and 27 2018, to evaluate PRL 6. SIO06-SB1 was installed in the grassy area southwest of Building 284 adjacent to the taxiway and SIO06-SB2 was installed in the grassy area southwest and adjacent to Building 284 (Figure 3). The soil borings were advanced using a direct-push drilling system to a total depth of 30 ft BGS (SIO06-SB1) and 25 ft BGS (SIO06-SB2). Soil lithology descriptions were logged on the soil boring logs (Appendix A). A total of four soil samples were collected and analyzed for PFOS/PFOA.

5.8.1.2 Groundwater

MW-SIO06-01 was drilled on September 27, 2018. Well construction details are shown in Table 4. The well construction diagram is included in Appendix A.

MW-SIO06-01 was developed on October 1, 2018, and sampled on October 9, 2018. Water levels are shown in Table 5, and water quality parameters are shown in Table 6. Groundwater sample MW-SIO06-01-01 was collected and analyzed for PFOS/PFOA. The Groundwater Micro Purge Sheet and Groundwater Micro Purge Log are included in Appendix B.

Monitoring well MW-SIO06-01 was surveyed by a licensed surveyor, and the well survey report is included in Appendix C.

5.8.2 Analytical Results

5.8.2.1 Soil

Four soil samples were collected and analyzed from PRL 6, as described in Section 5.8.1. The two surface soil samples (0 to 2 ft BGS) collected indicate that all six PFOS/PFOA compounds were detected at concentrations above the laboratory detection limits except for PFBS in SIO6-SB1-01 and PFHxS in

SIO06-SB2-01. No screening criteria exist for PFHxS, PFHpA, or PFNA. PFOS, PFOA and PFBS concentrations did not exceed the soil screening criteria in surface soil at any of the sample locations.

Two subsurface soil samples were collected at 15 to 17 ft BGS (SIO06-SB1-02, SIO06-SB2-02). Five of six PFOA/PFOS compounds (except PFNA) were detected above the laboratory detection limits in SIO06-SB1-02. Only PFBS and PFHxS were detected in SIO06-SB2-02. No screening criteria exist for PFHxS or PFHpA. PFBS, PFOS, and PFOA concentrations did not exceed the soil screening criteria in subsurface soil at any of the sample locations. Soil analytical results for PRL 6 are presented in Table 7 and shown in Figure 3.

5.8.2.2 Groundwater

One groundwater sample was collected from MW-SIO06-01, located near the Installation boundary, and analyzed as described in Section 5.8.1. All six PFOS/PFOA compounds were detected above laboratory detection limits. No screening criteria exist for PFHxS, PFHpA, or PFNA. PFBS concentrations did not exceed the RSL of 400,000 ng/L. PFOS (45 ng/L) did not exceed the 70-ng/L EPA drinking water HA (EPA 2016a) or IDNR action level. PFOA did exceed the 70-ng/L EPA drinking water HA (EPA 2016b) and IDNR action level at a concentration of 77 ng/L. The combined PFOS+PFOA concentration at MW-SIO06-01 (122 ng/L) exceeds screening criteria. Groundwater analytical results for PRL 6 are presented in Table 8 and shown in Figure 5.

5.9 PRL 7: NOZZLE TESTING LOCATION

Two soil borings (SIO07-SB1, SIO07-SB2) and one groundwater monitoring well (MW-SIO07-01) were installed and sampled to evaluate PRL 7. MW-SIO07-01 was co-located with SIO07-SB1 and also was used to evaluate PFOS/PFOA concentrations near the Installation boundary.

5.9.1 Sampling Activities

5.9.1.1 Soil

Two soil borings were installed on September 27, 2018, to evaluate PRL 7. The borings were installed in the grassy area south of Building 286 adjacent to the taxiway (Figure 3). The soil borings were advanced using a direct-push drilling system to a total depth of 30 ft BGS (SIO07-SB1) and 25 ft BGS (SIO07-SB2). Soil lithology descriptions were logged on the soil boring logs (Appendix A). A total of five soil samples were collected and analyzed for PFOS/PFOA.

5.9.1.2 Groundwater

MW-SIO07-01 was drilled on September 27, 2018. Well construction details are shown in Table 4. The well construction diagram is included in Appendix A.

MW-SIO07-01 was developed on October 1, 2018, and sampled on October 9, 2018. Water levels are shown in Table 5, and water quality parameters are shown in Table 6. Groundwater sample MW-SIO07-01-01 was collected and analyzed for PFOS/PFOA. The Groundwater Micro Purge Sheet and Groundwater Micro Purge Log are included in Appendix B.

Monitoring well MW-SIO07-01 was surveyed by a licensed surveyor, and the well survey report is included in Appendix C.

5.9.2 Analytical Results

5.9.2.1 Soil

Five soil samples were collected and analyzed from PRL 7, as described in Section 5.9.1. The two surface soil samples (0 to 2 ft BGS) indicate that all six PFOS/PFOA compounds were detected at concentrations above the laboratory detection limits. No screening criteria exist for PFHxS, PFHpA, or PFNA. PFOS, PFOA and PFBS concentrations did not exceed the soil screening criteria in surface soil at any of the sample locations.

Three subsurface soil samples were collected (including one field duplicate sample at SIO07-SB1-02) at 18 to 20 ft BGS (SIO07-SB1-02) and 19 to 21 ft BGS ft (SIO07-SB2-02). No PFOS/PFOA compounds were detected above the laboratory detection limits in either sample collected except for PFBS in SIO07-SB1-02 (primary and duplicate samples). The PFBS concentrations did not exceed the soil screening criteria in the subsurface soil samples. Soil analytical results for PRL 7 are presented in Table 7 and shown in Figure 3.

5.9.2.2 Groundwater

One groundwater sample was collected from MW-SIO07-01 and analyzed as described in Section 5.9.1. All six PFOS/PFOA compounds were detected above laboratory detection limits. No screening criteria exist for PFHxS, PFHpA, or PFNA. PFBS concentrations did not exceed the RSL of 400,000 ng/L. PFOS (12 ng/L) and PFOA (2.1 ng/L) did not exceed the 70-ng/L EPA drinking water HA (EPA 2016a and 2016b) or IDNR action level. The combined PFOS+PFOA concentration at MW-SIO07-01 (14.1 ng/L) does not exceed screening criteria. Groundwater analytical results for PRL 7 are presented in Table 8 and shown in Figure 5.

5.10 PRL 8: STORMWATER SEWER SYSTEM OUTFALL 1

One sediment sample (SIO08-SD1) and one surface water sample (SIO08-SW1) were collected to evaluate PRL 8. SIO08-SW1 also was used to evaluate PFOS/PFOA concentrations near the Installation boundary.

5.10.1 Sampling Activities

5.10.1.1 Surface water

Surface water sample SIO08-SW1 was collected on September 30, 2018. The last significant precipitation event was 0.15 in. on September 25, 2018. A surface water sample was collected from the drainage ditch below Outfall 1 on the eastern side of the Installation near Perimeter Road. The sample location is shown in Figure 2. Sample SIO08-SW1 was analyzed for PFOS/PFOA.

5.10.1.2 Sediment

Sediment sample SIO08-SD1 was collected on September 30, 2018, from the drainage ditch below Outfall 1 on the eastern side of the Installation near Perimeter Road. The sample is shown in Figure 2. Sample SIO08-SD1 was analyzed for PFOS/PFOA.

5.10.2 Analytical Results

5.10.2.1 Surface water

Surface water sample SIO08-SW1 was collected and analyzed as described in Section 5.10.1. Five of six PFOS/PFOA compounds were detected at concentrations above the laboratory detection limits. PFNA was not detected above the laboratory detection limits. No screening criteria exist for PFHxS or PFHpA. The PFBS concentration did not exceed the RSL of 400,000 ng/L. The PFOS and PFOA concentrations (28 and 8.4 ng/L, respectively) did not exceed the EPA drinking water HA of 70 ng/L or IDNR action level. The combined PFOS+PFOA concentration at this location (37.4 ng/L) does not exceed screening criteria. PRL 8 surface water analytical results are presented in Table 8 and shown in Figure 5.

5.10.2.2 Sediment

Sediment sample SIO08-SD1 was collected and analyzed as described in Section 5.10.1. Two of six PFOS/PFOA compounds (PFOS, PFHxS) were detected above the laboratory detection limits. No screening criteria exist for PFHxS. The PFOS concentration did not exceed the soil screening criteria in the sediment sample at PRL 8 sediment analytical results are presented in Table 7 and shown in Figure 3.

5.11 PRL 9: STORMWATER SEWER SYSTEM OUTFALL 2

One sediment sample (SIO09-SD1) and one surface water sample (SIO09-SW1) were collected to evaluate PRL 9. SIO09-SW1 also was used to evaluate PFOS/PFOA concentrations near the Installation boundary. As shown in Figure 2, PRL 9 is separated from the PRLs to the north by the airport runway.

5.11.1 Sampling Activities

5.11.1.1 Surface water

Surface water sample SIO09-SW1 was collected on October 10, 2018. The last significant precipitation event was 1.14 in. on October 9, 2018. A surface water sample was collected from the drainage ditch, below Outfall 2, south of Perimeter Road. The sample location is shown in Figure 2. Sample SIO09-SW1 was analyzed for PFOS/PFOA.

5.11.1.2 Sediment

Sediment sample SIO09-SD1 was collected on September 30, 2018, from Outfall 2 on the northern side of Perimeter Road. The sample is shown in Figure 2. Sample SIO08-SD1 was analyzed for PFOS/PFOA.

5.11.2 Analytical Results

5.11.2.1 Surface water

Surface water sample SIO09-SW1 was collected and analyzed as described in Section 5.11.1. All six PFOS/PFOA compounds were detected at concentrations above the laboratory detection limits. No screening criteria exist for PFHxS, PFHpA, or PFNA. The PFBS concentration did not exceed the RSL of 400,000 ng/L. The PFOS and PFOA concentrations (62 and 22 ng/L, respectively) did not exceed the EPA drinking water HA of 70 ng/L or IDNR action level. The combined PFOS+PFOA concentration at this location (84 ng/L) exceeds screening criteria. PRL 9 surface water analytical results are presented in Table 8 and shown in Figure 5.

5.11.2.2 Sediment

Sediment sample SIO09-SD1 was collected and analyzed as described in Section 5.11.1. Five of six PFOS/PFOA compounds were detected above the laboratory detection limits. PFBS was not detected above the laboratory detection limit. No screening criteria exist for PHFpA, PFHxS, or PFNA. The PFOS and PFOA concentrations did not exceed the soil screening criteria in the sediment sample at PRL 9. PRL 8 sediment analytical results are presented in Table 7 and shown in Figure 4.

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

This section presents the SI conclusions for each PRL and an evaluation of PFOS/PFOA contamination near the Installation boundary. The recommended DQOs are based on data collected by Leidos during this SI and an evaluation of the analytical results compared to applicable screening criteria.

6.1.1 PRL 1: Building 252 – Aerospace Ground Equipment

Although PFOS/PFOA compounds were detected in PRL 1 soil samples, evaluation of soil analytical data compared to soil screening criteria indicates there are no calculated residential risk-based screening level exceedances for PFBS, PFOS, or PFOA for soil in PRL 1.

Evaluation of groundwater data compared to screening criteria indicates an exceedance of the screening criteria in MW-SIO01-01 for PFOS+PFOA (combined) with a result of 1,650 ng/L.

Based on the SI results, the following DQOs are recommended for PRL 1:

- Additional surface and subsurface soil samples to determine if a previously undetected source area exists that is contributing to the groundwater exceedances; and
- Additional investigation to determine the nature and extent of PFAS in groundwater (both laterally
 and vertically), through sampling of additional new monitoring wells located both upgradient of and
 downgradient from PRL 1.

6.1.2 PRL 2: Building 261 – Main Hangar

Although PFOS/PFOA compounds were detected in PRL 2 soil samples, evaluation of soil analytical data compared to soil screening criteria indicates there are no calculated residential risk-based screening level exceedances for PFBS, PFOS, or PFOA for soil in PRL 2.

Evaluation of groundwater data compared to screening criteria indicates an exceedance of the screening criteria in MW-SIO02-01 for PFOS+PFOA (combined) with a result of 8,610 ng/L.

Based on the SI results, the following DQOs are recommended for PRL 2:

- Additional surface and subsurface soil samples to determine if a previously undetected source area exists that is contributing to the groundwater concentrations; and
- Additional investigation to determine the nature and extent of PFAS in groundwater (both laterally
 and vertically), through sampling of additional new monitoring wells located both upgradient of and
 downgradient from PRL 2.

6.1.3 PRL 3: Building 241 – ANG Paint Facility

Although PFOS/PFOA compounds were detected in PRL 3 soil samples, evaluation of soil analytical data compared to soil screening criteria indicates there are no calculated residential risk-based screening level exceedances for PFBS, PFOS, and PFOA for soil in PRL 3.

Although PFOS/PFOA compounds were detected in the groundwater sample from MW-SIO03-01, evaluation of groundwater analytical data compared to screening criteria indicates there is no exceedance of the screening criteria for PFOS+PFOA (combined).

Based on the SI results, the following DQOs are recommended for PRL 3:

- Additional surface and subsurface soil samples to determine if a previously undetected source area exists that is contributing to the groundwater concentrations; and
- Additional investigation to determine the nature and extent of PFAS in groundwater (both laterally and vertically), through sampling of additional new monitoring wells located both upgradient of and downgradient from PRL 3.

6.1.4 PRL 4: Apron

Although PFOS/PFOA compounds were detected in PRL 4 soil samples, evaluation of soil analytical data compared to soil screening criteria indicates there are no calculated residential risk-based screening level exceedances for PFBS, PFOS, or PFOA for soil in PRL 4.

Evaluation of groundwater data compared to screening criteria indicates an exceedance of the screening criteria in MW-SIO04-01, MW-SIO04-02, and MW-SIO04-02D for PFOS+PFOA (combined) with results of 260, 194, and 2,014 ng/L, respectively.

Based on the SI results, the following DQOs are recommended for PRL 4:

- Additional surface and subsurface soil samples to determine if a previously undetected source area exists that is contributing to the groundwater exceedances; and
- Additional investigation to determine the nature and extent of PFAS in groundwater (both laterally and vertically), through sampling of additional new monitoring wells located both upgradient of and downgradient from PRL 4.

6.1.5 PRL 5: Building 286 – Fire Station

Although PFOS/PFOA compounds were detected in PRL 5 soil samples, evaluation of soil analytical data compared to soil screening criteria indicates there are no calculated residential risk-based screening level exceedances for PFBS, PFOS, and PFOA for soil in PRL 5.

The groundwater at PRL 5 is co-located with PRLs 6 and 7. Evaluation of groundwater data compared to screening criteria indicates an exceedance of the screening criteria in MW-SIO06-01 for PFOS+PFOA (combined) with a result of 122 ng/L. No exceedance of the screening criteria was observed for the groundwater sample from MW-SIO07-01.

Based on the SI results, the following DQOs are recommended for PRL 5:

- Additional surface and subsurface soil samples to determine if a previously undetected source area exists that is contributing to the groundwater exceedances; and
- Additional investigation to determine the nature and extent of PFAS in groundwater (both laterally
 and vertically), through sampling of additional new monitoring wells located both upgradient of and
 downgradient from PRL 5.

6.1.6 PRL 6: Building 284 – Security Forces

Although PFOS/PFOA compounds were detected in PRL 6 soil samples, evaluation of soil analytical data compared to soil screening criteria indicates there are no calculated residential risk-based screening level exceedances for PFBS, PFOS, or PFOA for soil in PRL 6.

Evaluation of groundwater data compared to screening criteria indicates an exceedance of the screening criteria in MW-SIO06-01 for PFOS+PFOA (combined) with a result of 122 ng/L.

Based on the SI results, the following DQOs are recommended for PRL 6:

- Additional surface and subsurface soil samples to determine if a previously undetected source area exists that is contributing to the groundwater exceedances; and
- Additional investigation to determine the nature and extent of PFAS in groundwater (both laterally
 and vertically), through sampling of additional new monitoring wells located both upgradient of and
 downgradient from PRL 6.

6.1.7 PRL 7: Nozzle Testing Location

Although PFOS/PFOA compounds were detected in PRL 7 soil samples, evaluation of soil analytical data compared to soil screening criteria indicates there are no calculated residential risk-based screening level exceedances for PFBS, PFOS, and PFOA for soil in PRL 7.

Although PFOS/PFOA compounds were detected in the groundwater sample from MW-SIO07-01, evaluation of groundwater analytical data compared to screening criteria indicates there is no exceedance of the screening criteria for PFOS+PFOA (combined).

Based on the SI results, the following DQOs are recommended for PRL 7:

- Additional surface and subsurface soil samples to determine if a previously undetected source area exists that is contributing to the groundwater exceedances; and
- Additional investigation to determine the nature and extent of PFAS in groundwater (both laterally
 and vertically), through sampling of additional new monitoring wells located both upgradient of and
 downgradient from PRL 7.

6.1.8 PRL 8: Stormwater Sewer System Outfall 1

Five of six PFOS/PFOA compounds were detected at concentrations above the laboratory detection limit in surface water location SIO08-SW1. Evaluation of the surface water results compared to groundwater screening criteria indicated no exceedance of the screening criteria for PFOS+PFOA (combined), with a result of 37.4 ng/L.

Sediment results from the outfall indicated two of six PFOS/PFOA compounds were detected. Evaluation of sediment analytical data compared to soil screening criteria indicates there are no calculated residential risk-based screening level exceedances for sediment at PRL 8.

Based on the SI results, the following DQO is recommended for PRL 8:

 Additional investigation to further evaluate the concentrations of PFAS in surface water and sediment, which should include additional sampling of surface water and sediment for PFAS at PRL 8 as well as upgradient of and downgradient from PRL 8 to further evaluate the PFAS impacts.

6.1.9 PRL 9: Stormwater Sewer System Outfall 2

All six PFOS/PFOA compounds were detected at concentrations above the laboratory detection limit in surface water location SIO09-SW1. Evaluation of the surface water results compared to groundwater screening criteria indicated an exceedance of the screening criteria for PFOS+PFOA (combined), with a result of 84 ng/L.

Sediment results from the outfall indicated five of six PFOS/PFOA compounds were detected. Evaluation of sediment analytical data compared to soil screening criteria indicates there are no calculated residential risk-based screening level exceedances for sediment at PRL 9.

Based on the SI results, the following DQO is recommended for PRL 9:

 Additional investigation to further evaluate the concentrations of PFAS in surface water and sediment, which should include additional sampling of surface water and sediment for PFAS at PRL 9 as well as upgradient of and downgradient from PRL 9 to further evaluate the PFAS impacts.

6.1.10 PFOS/PFOA Contamination Near Installation Boundary

Samples from five monitoring wells (MW-SIO03-01, MW-SIO04-01, MW-SIO04-02, MW-SIO06-01, MW-SIO07-01) and two surface water samples (SIO08-SW1, SIO09-SW1) were collected to evaluate the PFOS/PFOA contamination near the Installation boundary (Figure 5).

Five of six PFOS/PFOA compounds were detected above the laboratory detection limits in samples collected from MW-SIO04-01, MW-SIO04-02, MW-SIO06-01, MW-SIO07-01, and SIO08-SW1. PFNA was detected above the laboratory detection limits in samples from MW-SIO06-01 and MW-SIO07-01, but was not detected at MW-SIO04-01, MW-SIO04-02 or SIO08-SW1. No screening criteria exist for PFHxS, PFHpA, or PFNA.

Concentrations of PFOA exceeded the 70-ng/L EPA drinking water HA (EPA 2016b) and IDNR screening levels at MW-SIO04-01, MW-SIO04-02, and MW-SIO06-01. PFOA concentrations at MW-SIO07-01 and SIO08-SW1 were below screening levels. PFOS and PFBS concentrations did not exceed screening criteria in any of these samples. The combined PFOS+PFOA concentrations exceeded the 70-ng/L EPA drinking water HA (EPA 2016a and 2016b) at all locations except for MW-SIO07-01 and SIO08-SW1.

PRLs 3 and 9 are separated from the PRLs to the north by the airport runway. All six PFOS/PFOA compounds were detected above the laboratory detection limits in groundwater sample from MW-SIO03-01 and surface water sample from SIO09-SW1. PFOS or PFOA concentrations, either individually or combined, did not exceed screening criteria in MW-SIO03-01, but the combined PFOS+PFOA concentration exceeded screening criteria in SIO09-SW1. PFBS concentrations did not exceed screening criteria in either sample. No screening criteria exist for PFHxS, PFHpA, or PFNA.

PFOS/PFOA compounds are likely migrating offsite given their presence and magnitude near the Installation boundary.

6.2 SUMMARY AND RECOMMENDATIONS

In summary, additional investigations are recommended at each of the nine PRLs assessed during this SI due to detections of PFOS and PFOA compounds in soil, groundwater, surface water, and sediment. The recommendations are summarized in Table 9 and described briefly below:

- Further investigation is necessary to determine the nature and extent of PFAS contamination due to detectable levels of PFOS/PFOA at the PRLs.
- Develop an expanded conceptual site model that considers localized groundwater and surface water flow paths to select future sampling locations.
- Complete the delineation of nature and extent of PFAS as part of an Expanded SI or an RI that could consist of:
 - Additional soil and sediment sampling and analysis of an expanded list of PFAS constituents (in addition to the six UCMR-3 constituents) to determine if significant source areas related to precursor substances are present. Precursor substances have been demonstrated to oxidize into PFOS and PFOA, and thus could provide a lingering source of these compounds to soil and groundwater.
 - Expanded groundwater sampling program (including analysis of an expanded list of PFAS constituents) to complete horizontal and vertical delineation of the PFAS impacts. Further groundwater investigation at the Base boundary is recommended due to the presence of PFAS in groundwater above their respective screening criteria.
 - The installation and sampling of upgradient and downgradient off-Base monitoring wells to better define the upgradient source of PFAS as well as PFAS concentrations that have migrated off Base.
 - The sampling of surface water and sediment at the Base as well as upgradient and downgradient off Base (including analysis of an expanded list of PFAS constituents) to better determine if there is an upgradient source of PFAS, as well as impacts of PFAS in surface water that have migrated off Base.
- Conduct preliminary site-specific risk assessment calculations in order to identify chemicals of
 potential concern (COPCs) in every medium and establish preliminary remedial goals for screening
 purposes.

DQOs are proposed based on the results of the SI and are presented in Table 9. In general, additional samples are required at each PRL in order to establish the nature and extent of PFAS constituents for each applicable medium and determine if a complete receptor pathway exists. For soil, additional samples are proposed to determine if a source area exists, and if so, to determine the vertical and horizontal extent for both the vadose and saturated zones. For groundwater, additional samples are proposed to quantify potential impacts from upgradient sources and assess the nature and extent of PFAS concentrations beyond the Base boundary. Additional surface water and sediment samples should be collected at PRLs 8 and 9 to further evaluate PFAS concentrations in surface water and sediment.

THIS PAGE INTENTIONALLY LEFT BLANK.

7.0 REFERENCES

- BB&E (BB&E, Inc.) 2016. Final Perfluorinated Compounds Preliminary Assessment Site Visit Report, Iowa Air National Guard, 185th Air Refueling Wing, Sioux City, Iowa. February.
- DoD (U.S. Department of Defense) 2017. U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.1.
- EPA (U.S. Environmental Protection Agency) 1999. Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA 540/R-99/0008. October.
- EPA 2016a. *Drinking Water Health Advisory for Perfluorooctane Sulfonate*. Office of Water, Health and Ecological Criteria Division. EPA Document Number: EPA 822-R-16-004. May.
- EPA 2016b. *Drinking Water Health Advisory for Perfluorooctanoic Acid.* Office of Water, Health and Ecological Criteria Division. EPA Document Number: EPA 822-R-16-005. May.
- EPA 2018. November 2018 EPA Regional Screening Level (RSL) tables. Updated November 2018.
- IDNR (Iowa Department of Natural Resources) 2016. Statewide standards for contaminants in soil and groundwater. Cumulative Risk Calculator.
- Leidos 2018. Work Plan for Fiscal Year 2017 Phase III Regional Site Inspections for Perfluorooctane Sulfonate and Perfluorooctanoic Acid at Sioux City Air National Guard Base, Sioux City, Iowa. Final. August.
- Montgomery Watson 2001. Work Plan for Project Closeout Activities at IRP Sties 3 and 5 185th Fighter Wing, Iowa Air National Guard. Final, August.
- NGB/A7OR. 2013. Final Record of Decision IRP Sties 1 through 5. January.
- URS 2015. Work Plan for the Regional Compliance Restoration Program Preliminary Assessment/Site Investigation 185th Air Refueling Wing Iowa Air National Guard Base. Final, September.
- USA.com. 2017. Sioux City, IA Weather. Available online at http://www.usa.com/sioux-city-ia-weather.htm.
- USFWS (U.S. Fish and Wildlife Service) 2017a. Environmental Conservation Online System. Woodbury County, Missouri. Retrieved from https://www.fws.gov/endangered/?ref=topbar. December.
- USFWS 2017b. National Wetlands Inventory, Wetland Mapper. Retrieved from https://www.fws.gov/wetlands/data/Mapper.html.
- Weston 2014. Final Quantitative Assessment Report, Munitions Constituent Migration on Air National Guard Operational Ranges, Sioux City ANGB Small Arms Range, Iowa. June.

THIS PAGE INTENTIONALLY LEFT BLANK

TABLES

THIS PAGE INTENTIONALLY LEFT BLANK

Table 1. Preliminary Assessment Report Summary and Recommendations

PRL			
No.	Potential AFFF PRL	Rationale	Recommendation
1	Building 252 – Aerospace Ground Equipment	Previously utilized AFFF fire suppression system. Known AFFF releases. Trench drains lead to a sanitary sewer via an OWS.	Proceed to SI. Sample soil and groundwater.
2	Building 261 – Main Hangar	Previously utilized AFFF fire suppression system. Known AFFF releases. Trench drains lead to a sanitary sewer via an OWS.	Proceed to SI. Sample soil and groundwater.
3	Building 241 – ANG Paint Facility	Current AFFF fire suppression system. Known AFFF releases. Trench drains lead to a sanitary sewer via an OWS.	Proceed to SI. Sample soil and groundwater.
4	Apron	Potential for AFFF releases in this area.	Proceed to SI. Sample soil and groundwater.
5	Building 286 – Fire Station	Potential for AFFF releases in this area.	Proceed to SI. Focus on soil and groundwater at the southern portion of the apron.
6	Building 284 – Security Forces	Potential for AFFF releases in this area.	Proceed to SI. Focus on soil and groundwater at the southern portion of the apron.
7	Nozzle Testing Location	Nozzle testing was conducted on paved area adjacent to Building 284.	Proceed to SI. Sample soil and groundwater.
8	Stormwater Sewer System Outfall 1	Potential for AFFF releases in this area.	Proceed to SI. Sample sediment and surface water.
9	Stormwater Sewer System Outfall 2	Potential for AFFF releases in this area.	Proceed to SI. Sample sediment and surface water.
10	Building 281 – Hazmart Pharmacy	55-gal drums of AFFF stored on secondary containment. No known releases.	NFA
11	Building 280 – Supply Warehouse	55-gal drums of AFFF temporarily stored on secondary containment. No known releases.	NFA

AFFF = Aqueous film-forming foam. ANG = Air National Guard.

NFA = No further action.

OWS = Oil/water separator.

PRL = Potential release location.

SI = Site inspection.

Table 2. PFOS/PFOA SI Screening Criteria

		EPA RSL	100 Targeton - 100	IDNR Action	Residential	IDNR Action
	Chemical	for	EPA	Level/Statewide	Risk-based Soil	Level/Statewide
	Abstract	Тар	Health	Standards for	Screening	Standards for
	Service	Water ^a	Advisory ^b	Groundwater ^f	Level ^c	Soil ^f
Parameter	Number	(ng/L)	(ng/L)	(ng/L)	(µg/kg)	(µg/kg)
PFOS	1763-23-1	NA	70.0 ^d	70	1,260	1,800
PFOA	335-67-1	NA		70	1,260	1,200
PFBS	375-73-5	$400,000^{\rm e}$	NA	NA	1,260,000	NA

^a EPA RSL for tap water at target HQ = 1, November 2018 (EPA 2018).

 $\mu g/kg = Micrograms per kilogram.$

EPA = U.S. Environmental Protection Agency.

HQ = Hazard quotient.

IDNR = Iowa Department of Natural Resources.

NA = Not available.

ng/L = Nanograms per liter.

PFBS = Perfluorobutane sulfonate.

PFOA = Perfluorooctanoic acid.

PFOS = Perfluorooctane sulfonate.

RSL = Regional screening level.

SI = Site inspection.

Table 3. Summary of SI Activities

PRL Name	Analyzed Parameters ^a	Soil Borings	Soil Samples ^b	Groundwater Samples ^b	Surface Water Samples	Sediment Samples
1: Building 252 – Aerospace Ground Equipment	PFOS/PFOA	2	4	1	0	0
2: Building 261 – Main Hangar	PFOS/PFOA	2	4	1	0	0
3: Building 241 – ANG Paint Facility	PFOS/PFOA	3	7	1	0	0
4: Apron	PFOS/PFOA	3	7	3	0	0
5: Building 286 – Fire Station	PFOS/PFOA	3	7	0°	0	0
6: Building 284 – Security Forces	PFOS/PFOA	2	4	1	0	0
7: Nozzle Testing Location	PFOS/PFOA	2	5	1	0	0
8: Stormwater Sewer System Outfall 1	PFOS/PFOA	0	0	0	1	1
9: Stormwater Sewer System Outfall 2	PFOS/PFOA	0	0	0	1	1

^a PFOS/PFOA is used generically in this SI Report to include the following six 2012 UCMR3 Rule emerging contaminants: PFOS, PFOA, perfluorobutane sulfonate, perfluorononanoic acid, perfluoroheptanoic acid, and perfluorohexane sulfonate. All samples were analyzed for PFOS/PFOA using EPA Method 537, revision 1.1.

ANG = Air National Guard. PRL = Potential release location.

EPA = U.S. Environmental Protection Agency. SI = Site inspection.

PFOA = Perfluorooctanoic acid. UCMR3 = Third Unregulated Contaminant Monitoring Rule.

PFOS = Perfluorooctane sulfonate.

^b Drinking Water Health Advisory for Perfluorooctane Sulfonate (EPA 2016a) and Drinking Water Health Advisory for Perfluorooctanoic Acid (EPA 2016b).

^c Residential risk-based soil screening levels determined by using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search) and the November 2018 EPA RSL tables (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search) and the November 2018 EPA RSL tables (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search) and the November 2018 EPA RSL tables (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search) and the November 2018 EPA RSL tables (https://epa.gov/risk/regional-screening-levels-rsls-generic-tables) for soil and sediment at target HQ = 1 (EPA 2018).

^d When PFOA and PFOS are both present, the combined detected concentrations of the compounds are compared with the 70-ng/L health advisory value.

e PFBS analytical results for groundwater and surface water have been compared to the tap water screening levels.

f IDNR action levels/statewide standards for PFOS and PFOA in soil and groundwater (IDNR 2016).

^b Includes field duplicate.

^e PRL 5 is co-located with PRLs 6 and 7. Groundwater samples from PRLs 6 and 7 were used to evaluate PRL 5.

Table 4. Well Construction Details for Sioux City ANGB SI

Monitoring Well	Top of Casing Elevation (ft AMSL)	Ground Elevation (ft AMSL)	Screened Interval (ft BGS)	Total Well Depth (ft BTOC)	Well Diameter (in.)	Casing
		PRL	. 1			
MW-SIO01-01	1091.296	1091.81	20.0-30.0	30.4	2	PVC
		PRL	. 2			
MW-SIO02-01	1091.692	1092.29	20.0-30.0	30.4	2	PVC
		PRL	. 3			
MW-SIO03-01	1091.970	1092.22	15.0-25.0	25.4	2	PVC
		PRL	. 4			
MW-SIO04-01	1092.143	1092.69	20.0-30.0	30.4	2	PVC
MW-SIO04-02	1091.883	1092.47	15.0-25.0	25.4	2	PVC
		PRL	6			
MW-SIO06-01	1093.506	1094.03	15.0-25.0	25.4	2	PVC
		PRL	. 7	_		
MW-SIO07-01	1093.793	1094.15	20.0-30.0	30.4	2	PVC

Source: TOC elevation and ground surface elevation data are from the monitoring well survey on October 15, 2018, by McClure Engineering Company (see Appendix C). Screened interval, total depth, and well diameter data in this table were obtained from the well construction diagrams provided in Appendix A.

AMSL = Above mean sea level. BTOC = Below top of casing. SI = Site inspection. ANGB = Air National Guard Base. PRL = Potential release location. TOC = Top of Casing.

BGS = Below ground surface. PVC = Polyvinyl chloride.

Table 5. Water Level Measurements

			October 2018					
			Depth to	Groundwater				
	TOC Elevation		Water	Elevation				
Monitoring Well Identifier	(ft AMSL)	Screened Interval	(ft BTOC)	(ft AMSL)				
	New Wells ^a							
MW-SIO01-01	1091.296	20.0-30.0	9.55	1081.746				
MW-SIO02-01	1091.692	20.0-30.0	19.73	1071.962				
MW-SIO03-01	1091.970	15.0-25.0	20.15	1071.820				
MW-SIO04-01	1092.143	20.0-30.0	20.45	1071.693				
MW-SIO04-02	1091.883	15.0-25.0	19.80	1072.083				
MW-SIO06-01	1093.506	15.0-25.0	22.24	1071.266				
MW-SIO07-01	1093.793	20.0-30.0	22.36	1071.433				

^a Source: TOC elevation and ground surface elevation data are from the monitoring well survey on October 15, 2018, by McClure Engineering Company (see Appendix C). Screened intervals shown in this table for the new wells were obtained from the well construction diagrams provided in Appendix A. Depth to water information was obtained from the groundwater sampling logs in Appendix B.

AMSL = Above mean sea level.

BTOC = Below top of casing.

TOC = Top of casing.

Table 6. Water Quality Parameters

	Groundwater								
Parameter	MW-SIO01-01	MW-SIO02-01	MW-SIO03-01	MW-SIO04-01	MW-SIO04-02	MW-SIO06-01			
Dissolved oxygen (mg/L)	2.73	0.34	0.93	1.75	0.47	3.77			
ORP (mV)	23.7	9.5	6.3	- 54.9	-13.5	145.4			
pH (S.U.)	8.01	8.41	8.10	9.67	8.77	7.33			
Conductivity (mS/cm)	1.430	0.929	1.314	1.130	1.219	1.400			
Temperature (°C)	11.52	13.44	13.17	11.88	12.84	13.02			
Turbidity (NTU)	86.0	22.5	24.5	16.7	33.1	19.5			

	Groundwater	Surfa	ce Water
Parameter	MW-SIO07-01	SIO08-SW1	SIO09-SW1
Dissolved oxygen (mg/L)	0.34	10.56	NM
ORP (mV)	- 48.6	105.7	NM
pH (S.U.)	9.60	7.73	NM
Conductivity (mS/cm)	1.574	1.222	NM
Temperature (°C)	12.74	16.20	NM
Turbidity (NTU)	27.9	15.9	NM

mS/cm = MicroSiemens per centimeter.

mV = Millivolt.

mg/L = Milligrams per liter
NTU = Nephelometric turbidity unit.
ORP = Oxidation-reduction potential.

S.U. = Standard unit.

NM = Not measured.

Table 7. Summary of Soil and Sediment Analytical Results

					Analyte	Perfluorooctane Sulfonate (PFOS)	957 Perfluorooctanoic Acid (PFOA)	Perfluorobutane Sulfonate (OPFBS)	Z Perfluoroheptanoic Acid (PFHpA)	Perfluorohexane Sulfonate (PFHxS)	Z Perfluorononanoic Acid (PFNA)
					ning Level ^a	1,800	1,200	NA	NA NA	NA NA	NA NA
PRL	Location	Sample Identifier	Sample Date	Sample Depth (ft)	Sample Type	(μg/kg)	(μg/kg)	(µg/kg)	(μg/kg)	(μg/kg)	(µg/kg)
	SIO01-SB1	SIO01-SB1-01	9/29/2018	0-2	REG	42	0.91	0.23 U	0.32 J	1.1	0.2 J
	SIO01-SB1	SIO01-SB1-02	9/29/2018	16-18	REG	29	0.55	0.26 J	0.11 J	5.3	0.26 U
1	SIO01-SB2	SIO01-SB2-01	9/29/2018	0-2	REG	0.51 J	0.24 U	0.085 J	0.24 U	0.47	0.24 U
	SIO01-SB2	SIO01-SB2-02	9/29/2018	5 - 7	REG	5.3	0.23 U	0.2 U	0.23 U	0.35	0.14 J
	SIO02-SB1	SIO02-SB1-01	9/29/2018	0-2	REG	1.6	14	0.77	3.7	24	0.26 U
2	SIO02-SB1	SIO02-SB1-02	9/29/2018	16-18	REG	2.3	0.38	0.061 J	0.11 J	2.3	0.21 U
	SIO02-SB2	SIO02-SB2-01	9/29/2018	0-2	REG	0.43 J	3.8	0.24 U	1.8	2.7	0.27 U
	SIO02-SB2	SIO02-SB2-02	9/29/2018	16-18	REG	0.52 U	0.44	0.19 U	0.086 J	0.59	0.21 U
	SIO03-SB1	SIO03-SB1-01	9/26/2018	0-2	REG	21	0.52	0.24 U	0.45	1.3	0.43
	SIO03-SB1	SIO03-SB1-02	9/26/2018	15-17	REG	140	0.7	0.21 U	0.25 J	1	2.3
	SIO03-SB2	SIO03-SB2-01	9/26/2018	0-2	REG	16	2.8	0.19 U	0.85	0.51	2.1
3	SIO03-SB2	SIO03-SB2-02	9/26/2018	15-17	REG	40	0.57	0.25 U	0.44	0.72	0.59
	SIO03-SB3	SIO03-SB3-01	9/26/2018	0-2	REG	330 J	12	0.099 J	3.2	8.7	4.7
	SIO03-SB3	SIO03-SB3-02	9/26/2018	15-17	REG	24	3.4	0.48 J	2.2	18	0.38 J
	SIO03-SB3	SIO03-SB3-02D	9/26/2018	15-17	FD	24	3.5	0.56	2.4	23	0.46

Table 7. Summary of Soil and Sediment Analytical Results (continued)

					Analyte	Perfluorooctane Sulfonate (PFOS)	Perfluorooctanoic Acid (PFOA)	Perfluorobutane Sulfonate (PFBS)	Perfluoroheptanoic Acid (PFHpA)	Perfluorohexane Sulfonate (PFHxS)	Perfluorononanoic Acid (PFNA)
					ning Level ^a	1,260	1,260 1,200	1,260,000 NA	NA NA	NA NA	NA NA
PRL	Location	Sample Identifier	Sample Date	Sample Depth (ft)	Sample Type	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)
	SIO04-SB1	SIO04-SB1-01	9/27/2018	0-2	REG	0.85 J	0.27 U	0.15 J	0.27 U	0.98	0.27 U
	SIO04-SB1	SIO04-SB1-02	9/27/2018	16-18	REG	0.53 U	0.21 U	0.19 U	0.21 U	0.21 U	0.21 U
	SIO04-SB2	SIO04-SB2-01	9/28/2018	0-2	REG	2.3	0.35 J	0.19 J	0.15 J	2.2	0.25 U
4	SIO04-SB2	SIO04-SB2-01D	9/28/2018	0-2	FD	4.7	0.91	0.11 J	0.19 J	5.9	0.11 J
	SIO04-SB2	SIO04-SB2-02	9/28/2018	10-12	REG	0.64 U	0.26 U	0.23 U	0.26 U	0.26 U	0.26 U
	SIO04-SB3	SIO04-SB3-01	9/29/2018	0-2	REG	0.73 J	0.25 U	0.22 U	0.17 J	0.74	0.25 U
	SIO04-SB3	SIO04-SB3-02	9/29/2018	10-12	REG	0.71 U	0.28 U	0.26 U	0.28 U	0.28 U	0.28 U
	SIO05-SB1	SIO05-SB1-01	9/25/2018	0-2	REG	5.5	0.23 J	0.7	0.16 J	12	0.27 U
	SIO05-SB1	SIO05-SB1-02	9/25/2018	15-17	REG	0.57 U	0.23 U	0.2 U	0.23 U	1.8	0.23 U
	SIO05-SB2	SIO05-SB2-01	9/25/2018	0-2	REG	0.94 J	0.16 J	1.2	0.18 J	9.5	0.28 U
5	SIO05-SB2	SIO05-SB2-02	9/25/2018	15-17	REG	0.54 U	0.22 U	0.2 U	0.22 U	0.22 U	0.22 U
	SIO05-SB3	SIO05-SB3-01	9/25/2018	0-2	REG	190	6.1	0.6	2	49	1.6
	SIO05-SB3	SIO05-SB3-02	9/25/2018	15-17	REG	260	0.71	0.15 J	0.2 J	10	0.57
	SIO05-SB3	SIO05-SB3-02D	9/25/2018	15-17	FD	57	0.64	0.069 J	0.14 J	10	0.22 J
	SIO06-SB1	SIO06-SB1-01	9/27/2018	0-2	REG	91	0.62	2.2 U	0.29 J	2.4 J	0.52
6	SIO06-SB1	SIO06-SB1-02	9/27/2018	15-17	REG	14	0.34 J	0.16 J	0.22 J	4.8	0.28 U
"	SIO06-SB2	SIO06-SB2-01	9/25/2018	0-2	REG	220	0.86	0.17 J	5.3 U	16	0.51
	SIO06-SB2	SIO06-SB2-02	9/25/2018	15-17	REG	0.53 U	0.21 U	0.68	0.21 U	0.29 J	0.21 U

Table 7. Summary of Soil and Sediment Analytical Results (continued)

					Analyte ning Level ^a	OBS.1. Perfluorooctane Sulfonate (PFOS)	Perfluorooctanoic Acid (PFOA)	Perfluorobutane Sulfonate (PFBS)	Z Z Perfluoroheptanoic Acid (PFHpA)	Z Z Perfluorohexane Sulfonate (PFHxS)	Z Z Perfluorononanoic Acid (PFNA)
PRL	Location	Sample Identifier	Sample Date	IDNR Ac Sample Depth (ft)	Sample Type	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)
	SIO07-SB1	SIO07-SB1-01	9/27/2018	0-2	REG	46	0.53	0.091 J	0.6	3.7	0.43
	SIO07-SB1	SIO07-SB1-02	9/27/2018	18-20	REG	0.57 U	0.23 U	2.2	0.23 U	0.23 U	0.23 U
7	SIO07-SB1	SIO07-SB1-02D	9/27/2018	18-20	FD	0.57 U	0.23 U	13	0.23 U	0.23 U	0.23 U
	SIO07-SB2	SIO07-SB2-01	9/27/2018	0-2	REG	57	1.6	0.14 J	1.8	4.2	1.6
	SIO07-SB2	SIO07-SB2-02	9/27/2018	19 - 21	REG	0.5 U	0.2 U	0.18 U	0.2 U	0.2 U	0.2 U
					Sediment						
8	SIO08-SD1	SIO08-SD1-01	9/30/2018	0	REG	3.9	0.43 U	0.39 U	0.43 U	0.34 J	0.43 U
9	SIO09-SD1	SIO09-SD1-01	9/30/2018	0	REG	3.2	0.33 J	0.23 U	0.13 J	0.16 J	0.38

^a EPA residential risk-based soil screening level determined using the EPA RSL calculator and November 2018 EPA RSL tables (EPA 2018).

Bold denotes detected concentration.

 $\mu g/kg = Micrograms$ per kilogram. EPA = U.S. Environmental Protection Agency.

FD = Field duplicate.

IDNR = Iowa Department of Natural Resources.

NA = Not applicable. PRL = Potential release location.

REG = Regular.

RSL = Regional screening level.

Data Qualifiers:

J = Estimated concentration.

U = Chemical not detected above the laboratory detection limit.

^b IDNR groundwater action level/statewide standard.

Table 8. Summary of Groundwater and Surface Water Analytical Results

				Health A	Analyte Advisory ^a	Perfluorooctane Sulfonate (PFOS)	Perfluorooctanoic Acid (PFOA)	o PFOS+PFOA	Z Perfluorobutane Sulfonate (PFBS)	Z Perfluoroheptanoic Acid (PFHpA)	Z Perfluorohexane Sulfonate > (PFHxS)	Z Perfluorononanoic Acid (PFNA)
			F	EPA RSL Ta	500	NA	NA	NA	400,000	NA	NA	NA
				IDNR Action		70	70	NA	NA	NA	NA	NA
PRL	Location	Sample Identifier	Sample Date	Sample Depth (ft)	Sample Type	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)
				Grou	ndwater							
1	MW-SIO01-01	MW-SIO01-01-01	10/10/2018	25.00	REG	1300	350	1650	380	100	2800	2.4
2	MW-SIO02-01	MW-SIO02-01-01	10/10/2018	25.00	REG	7800	810	8610	98	330	1400	71
3	MW-SIO03-01	MW-SIO03-01-01	10/10/2018	22.50	REG	14	34	48	190	180	830	0.72 J
	MW-SIO04-01	MW-SIO04-01-01	10/9/2018	25.00	REG	10	250	260	180	150	600	1.5 U
4	MW-SIO04-02	MW-SIO04-02-01	10/9/2018	22.80	REG	14	180	194	44	73	540	1.2 U
	MW-SIO04-02	MW-SIO04-02-01D	10/9/2018	22.80	FD	14	190	204	44	66	510	1.3 U
6	MW-SIO06-01	MW-SIO06-01-01	10/9/2018	23.62	REG	45	77	122	840	89	4800	0.54 J
7	MW-SIO07-01	MW-SIO07-01-01	10/9/2018	26.18	REG	12	2.1	14.1	4000 J	2.1	12	0.53 J
				Surfa	ce Water							
8	SIO08-SW1	SIO08-SW1-01	9/30/2018	NA	REG	28	9.4	37.4	14	3.4	48	1.3 U
9	SIO09-SW1	SIO09-SW1-01	10/10/2018	NA	REG	62	22	84	15	23	89	6.9

^a May 2016 EPA health advisory for PFOS + PFOA combined. ^b November 2018 EPA RSL for tap water (EPA 2018).

Bold denotes detected concentration.

Bold highlighted denotes concentration that exceeds screening criteria.

EPA = U.S. Environmental Protection Agency.

FD = Field duplicate.

IDNR = Iowa Department of Natural Resources.

NA = Not applicable.

ng/L = Nanograms per liter.

PFOA = Perfluorooctanoic acid.

PFOS = Perfluorooctane sulfonate.

PRL = Potential release location.

REG = Regular.

RSL = Regional screening level.

Data Qualifiers:

J = Estimated concentration.

U = Chemical not detected above the laboratory detection limit.

^cIDNR groundwater action level/statewide standard.

Table 9. SI Recommendation Summary Table

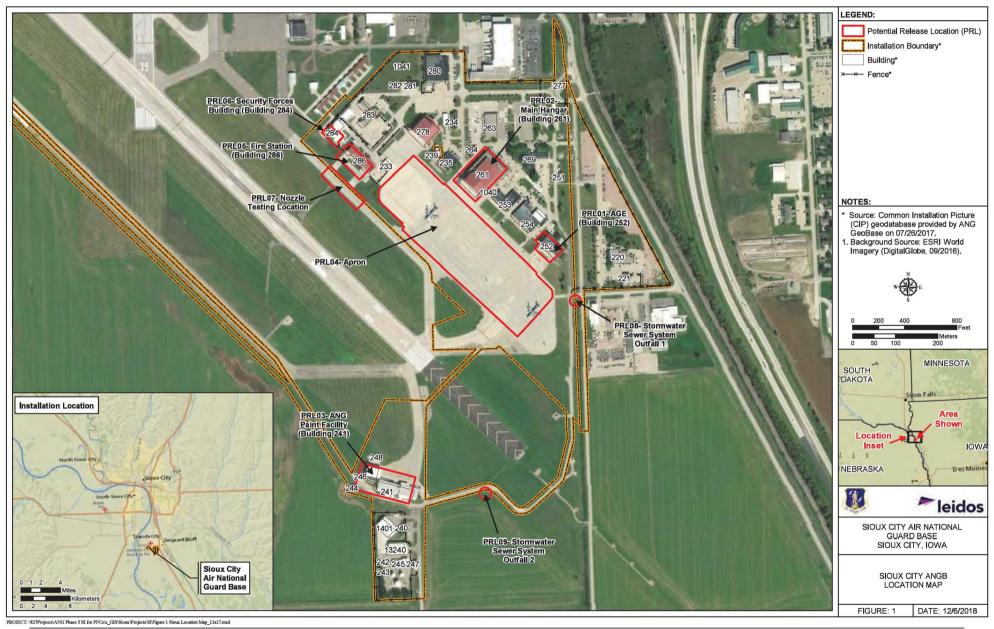
PRL No.	PRL Description	Constituents Above Screening Criteria	Sampling Recommendations and Objectives
1	Building 252 — Aerospace Ground Equipment	Groundwater: PFOS, PFOA, PFOS + PFOA	Soil: Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists, and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.
			Groundwater: Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.
2	Building 261 – Main Hangar	Groundwater: PFOS, PFOA, PFOS + PFOA	Soil: Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists, and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.
			Groundwater: Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.
3	Building 241 – ANG Paint Facility	None	Soil: Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists, and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.
			Groundwater: Although screening criteria were not exceeded, determination of the nature and extent both vertically and horizontally of PFAS compounds should be completed through the sampling of existing and additional new monitoring wells.
4	Apron	Groundwater: PFOA, PFOS + PFOA	Soil: Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists, and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.
			Groundwater: Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.
5	Building 286 – Fire Station	Groundwater: PFOA, PFOS + PFOA	Soil: Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists, and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.
			Groundwater: Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.
6	Building 284 – Security Forces	Groundwater: PFOA, PFOS + PFOA	Soil: Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists, and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.
			Groundwater: Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.

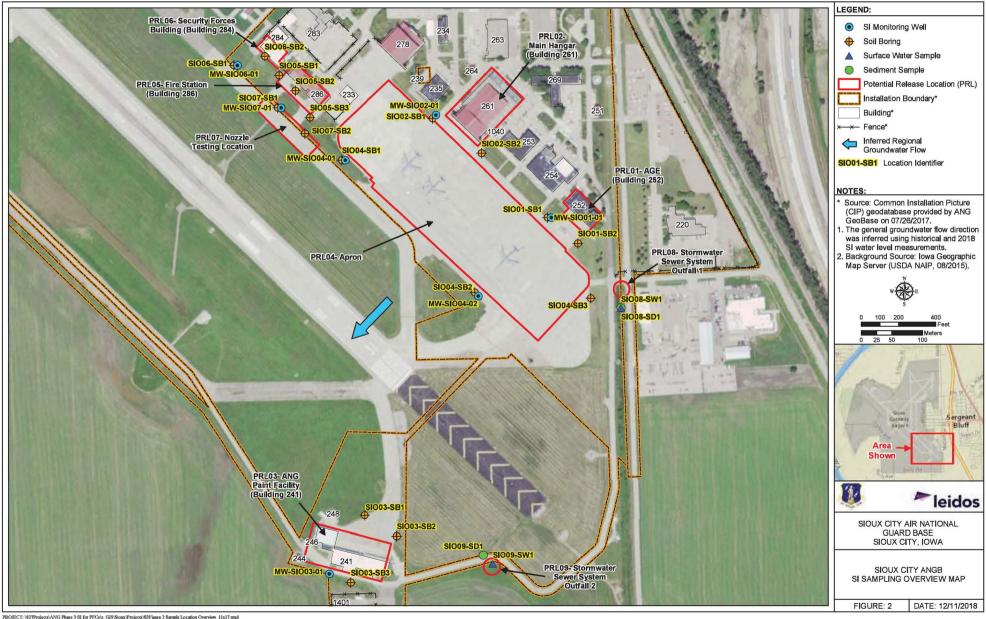
Table 9. SI Recommendation Summary Table (continued)

PRL No.	PRL Description	Constituents Above Screening Criteria	Sampling Recommendations and Objectives
7	Nozzle Testing Location	None	Soil: Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists, and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.
			Groundwater: Although screening criteria were not exceeded, determination of the nature and extent both vertically and horizontally of PFAS compounds should be completed through the sampling of existing and additional new monitoring wells.
8	Stormwater Sewer System Outfall 1	None	Surface Water and Sediment : Although screening criteria were not exceeded, determine PFAS impact to surface water through upgradient sampling of surface water and sediment and evaluate potential downgradient impacts at locations off Base.
9	Stormwater Sewer System Outfall 2	Surface Water: PFOS + PFOA	Surface Water and Sediment : Determine PFAS impact to surface water through upgradient sampling of surface water and sediment and evaluate potential downgradient impacts at locations off Base.
	General		Soil: Collect additional surface and subsurface soil samples to determine the nature and extent both vertically and horizontally of PFAS contamination. Analyze for an expanded list of PFAS compounds to evaluate for potential precursor compounds.
			Groundwater: (1) Collect additional groundwater samples in upgradient locations to quantify potential impacts from upgradient sources, and (2) collect additional groundwater samples off Base through the installation of a limited number of new monitoring wells to determine the nature and extent of PFAS beyond the Base boundary.
			Surface Water/Sediment: (1) Collect additional surface water and sediment samples in upgradient locations to quantify potential impacts from upgradient sources, and (2) collect additional surface water and sediment samples off Base to determine the nature and extent of PFAS beyond the Base boundary.

ANG = Air National Guard.

PFAS = Per- and polyfluoroalkyl substances. PFOA = Perfluorooctanoic acid.

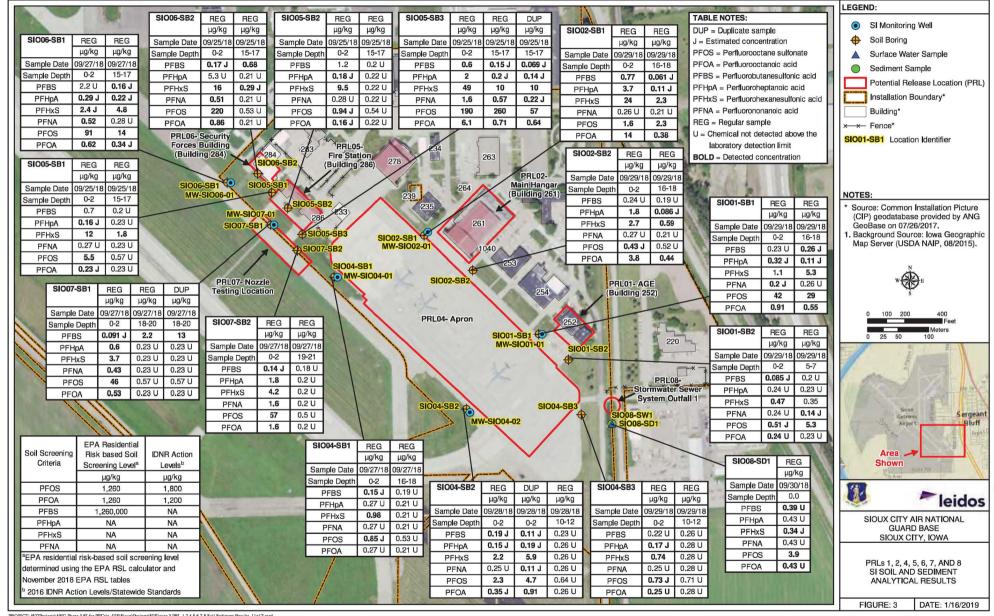

 $PFOS = Perfluorooctane \ sulfonate.$

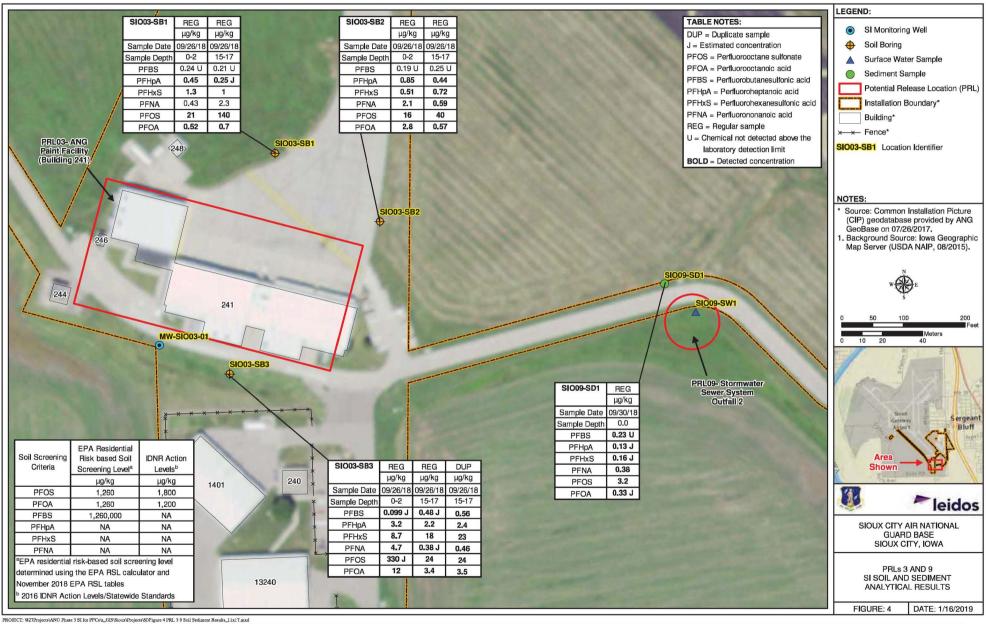

PRL = Potential release location.

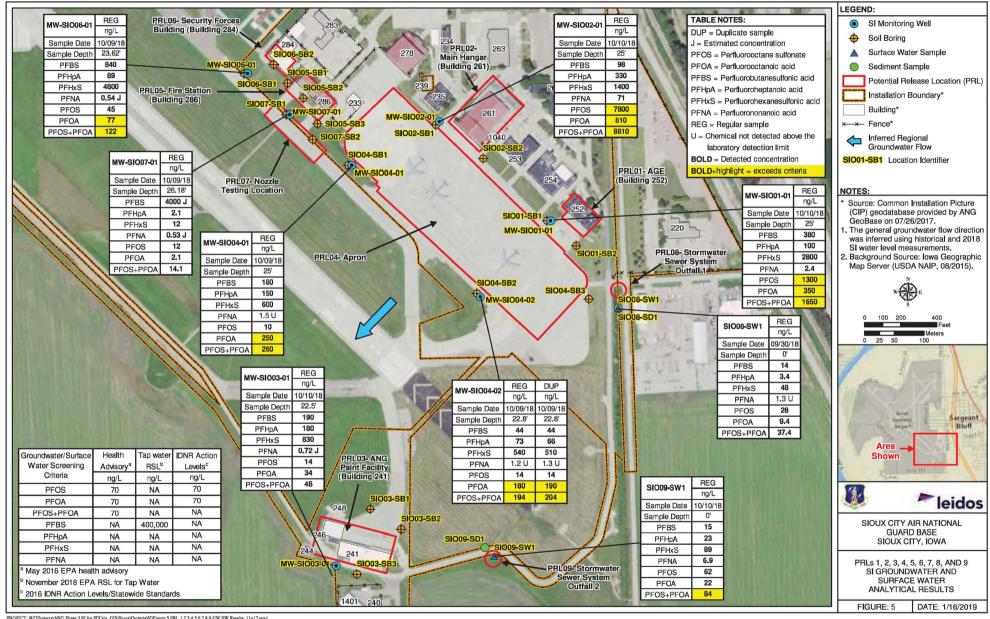
SI = Site inspection.

FIGURES

THIS PAGE INTENTIONALLY LEFT BLANK




F-4


Final Site Inspection Report

Sioux City ANGB, Iowa

PROJECT: \(\frac{1}{2}\)27Projects\(\text{ANG}\) Phase 3 SI for PFCs\(\frac{1}{2}\) GIS\(\text{Sioux\Projects\SI\Figure 3}\) PRL 1 2 4 5 6 7 8 Soil Sediment Results_11x17.mxd

PROJECT: \%27Projects\ANG Phase 3 SI for PFCs\z_GIS\Sioux\Projects\SFigure 5 PRL 1 2 3 4 5 6 7 8 9 GW SW Results_11x17.mxd

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDIX A SOIL BORINGS AND WELL CONSTRUCTION LOGS

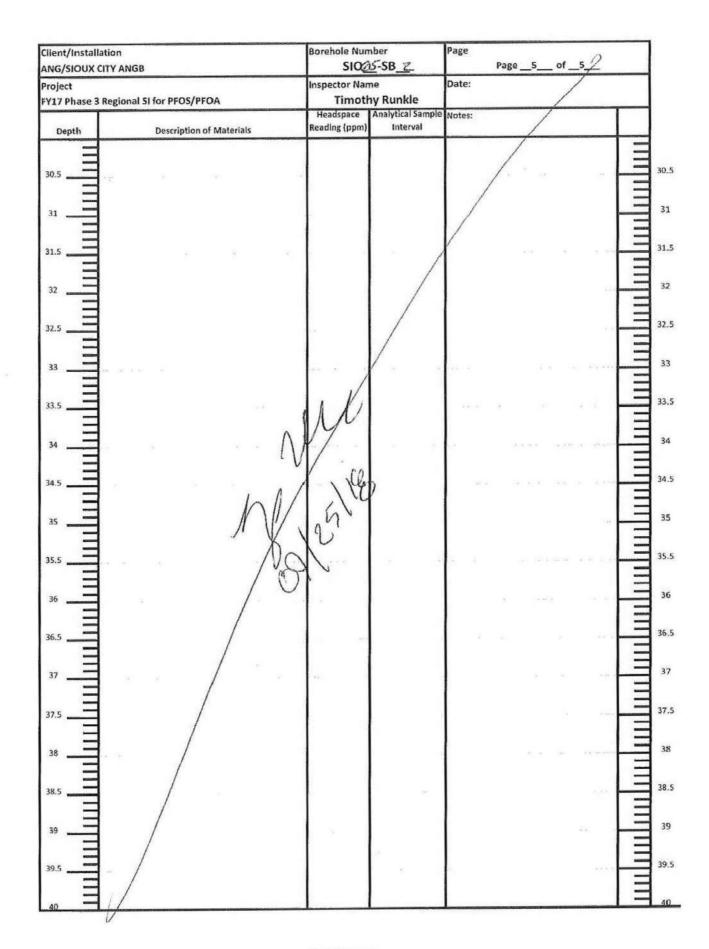
THIS PAGE INTENTIONALLY LEFT BLANK.

Client/Installation ANG/SIOUX	CITY AN	IGB	Oversight Contractor Leidos			Borehole Nu SI	mber 0 <u>05</u> -S	B <u>3</u>		
Project			Driller : Ca	scade		Page				
FY17 Phase 3 Region	al SI for PF	OS/PFOA	IA.	NG/SIOUX CITY	ANGB	Page	_1 of	_5		
Sizes and Type of Drilling a	nd Samplin	ng Equipment			Souring	Cation Descrip	No 28	36 Un RASS		
Date/Time Started : 09 • 2 5 • 2 0 (8) 13	1500			Date/Time						
Overburden Thickness		Depth to Gr	oundwater (
Sample for PFOS/PFOA Ana	alysis			Sample for	PFOS/PFOA A	nalysis				
Sample ID: SIO <u>05</u> -SI	3 <u>3</u> -01			Sample I	D: SIO 15-	SB3-02				
Sample Interval: 0 to 2 ft				Sample I	nterval: 🖊	5 to 17	ft			
Inspector Name Timothy Runkle				Inspector Si	gnature 7 TM					
Monitoring Well ID:		Backfill Type	TOMTE	Date Backfilled: 9/28/18						
Latitude		Longitude	0100116		Elevation (fi					
42,39541364		96,376	13087		Liceation (ii	-				
Sketch:	Signes.		-)		2860					
Contrece										
					(X)					
Corn	ss					Ger	ICC			
								NOT TO SCALE		

Client/Instal	lation ANG/SIOUX CITY ANGB	Borehole Nur	mber 5-SB <u>3</u>	Page _ 2 _ of _ 5 Date:		
Project FY17 Phase 3	Regional SI for PFOS/PFOA	Inspector Na Timot	_{ne} hy Runkle			
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:		
0.5	3.5/5 Recorded					
١ =	541, 2,3/1 0-0,5	-	S1005-583-c	-		
1.5				() () () () () () () () () ()	目	
2	G.S - 21	0,0		(Indiana)	H	
2.5	SOFT MOIST I"THUS SOME PLASTIC LOYR 4/4 Sildy with Cly	0,0			誾	
		-			冒	
3.5	21-2,5 OZY Silly Clay Huch Taiss Som weeker				目	
_	1048 213					
5	2.5-5 west Silly Clap 2" TATS plushe 2.54 R 5/4					
5.5					Ħ	
6.5	3.51/5' Recover			,		
7	SAA	0.0				
7.5		1 = 4				
8 ==						
8.5						
9 _ =						
9.5						

目
트
=
目
$+\equiv$
且
I
H
旦
13
TE
目
三
T
HE
目
目
目
E
E
旦

Client/Install		Borehole Nur	nber	Page Page 4 of 5_ Date:		
Project	Regional SI for PFOS/PFOA	Inspector Na				
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:		
20.5	5'.75' REcovery WET				20	
21 =	Fine to medium				21	
21.5	Fine to medium Smed Subsecrete Jashmany 2,5 YR 5/4	0,0			21	
22	2,54R 5/4				22	
22.5						
23						
23.5						
24.5					= 24	
25 =					<u> </u>	
25.5	ENDOF BORMY				= 25	
26 =					26	
26.5					= 26	
27					27	
27.5					27	
28					38	
28.5			10 PM		28	
29 = =					29	
30					30	

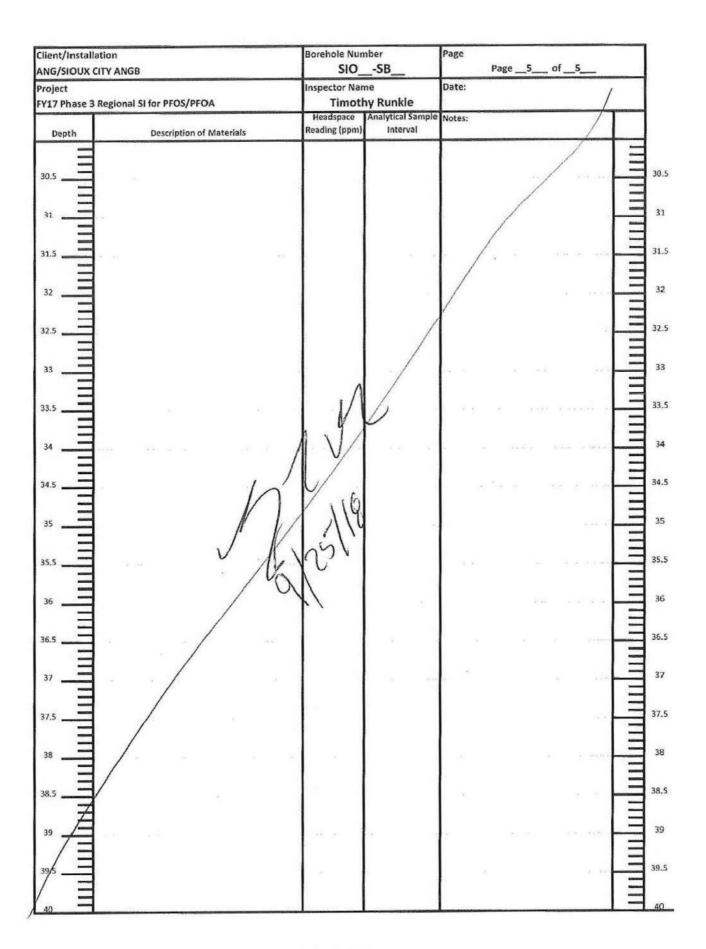

Client/Installation ANG/SIOUX CITY ANGB	Borehole N	umber	Page5 of5			
Project FY17 Phase 3 Regional SI for PFOS/PFOA	Inspector N Time	ame othy Runkle	Date:			
Depth Description of Materi	Headspace Reading (ppr		Notes:			
30.5		Mark			330 331 331 332 333 334 334 335 336 337 337 337 337 337 337 337 337 337	

Client/Insta	allation ANG/SIOUX CITY AN	IGB	Oversight (Contractor Leidos		Borehole Numbe	7 <u>/5</u> -SB <u>-Z</u>
Project			Driller ; Cas	cade	11-7-7	Page	
FY17	Phase 3 Regional SI for PF	OS/PFOA	AN	G/SIOUX CIT	Y ANGB	Page _1	of5
	gpe of Drilling and Sampling	g Equipment			South	FACE OF B. grassy our	1 1 286
Date/Time	Started: 9 = 25 = 20 18	1500	0	Date/Time	Finished:	E	
Overburder	n Thickness NA	Depth to G	roundwater (f			25	
	PFOS/PFOA Analysis				PFOS/PFOA A		
Sample I	D: SIOOS-SBZ-01			Sample	ID: SIO05-5	SB <u>Z</u> -02	
Sample I	nterval: 0 to 2 ft			Sample	Interval: _/	5 to 17 ft	
Inspector N	ame Timothy Ru	ınkle		Inspector S	ignature , ~~~		
Monitoring		Backfill Typ	e lonite		Date Backfil		
Latitude 42,39	579624	Longitude 96.37	440931		Elevation (ft		
Notes:							
Sketch:					1		
)		Boil	d 7 28	se			
			1				
· c		*		5			
	2		Grass	. 0			
			CONCR	66-4			
		Gr	151		7		NOT TO SCALE

Client/Install	ation ANG/SIOUX CITY ANGB	Borehole Nur	nber 15-SB_Z	Page	Page _2_ of	_5	
Project FY17 Phase 3	Regional SI for PFOS/PFOA	Inspector Nar Timot	_{ne} ny Runkle	Date:	9.25.20	218	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:			
0.5	O-5' 4/5' REcover O-05 GMSS Roods charge Clayer Stls 2" tabs soft plashe 2.543/7 BARA Plashe Charwish 3" tabs 2.54 4/9 charp 3'-44 STA Plashe Charwish 3'-44 STA Plashe Charwish Amp		3008-382-41				2 2 3 3 3
4.5	2.54 5/4		**		-4	e. 101 = 330	4.
6.5	Stiff clay w/s.17 med plastic 2" tabs	9.0		PART K	4 a 44	Er A Pre	
7,5						* ****	88

	lient/Installation NG/SIOUX CITY ANGB		nber OSSB Z	Page of5		
Project	Regional SI for PFOS/PFOA	Inspector Nar		Date: 9/25/2018		
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:		
	10-15 1 3/5' Recover 10-11 1 SANDY SILL WICKY				I	
10.5	3/5' Recover		Tan Car		=	1
=	10-11					
11.0	SANDY SILL WICky				=	1
\equiv	Sold plastic much				13	
11.5	11 121 2154414	0,0			H	1
Ξ	11-131					
12.0	SAND FINE SUBRYER				H	1
=	of 2,54 6/3					
12.5	4NU 7154R 4/6				H	1
	HARD/compact					
13.0		100	the second		H	1
=	2	4.5			=	
3.5			-		=	1
=						
4.0					H	1
=						
14.5					=	1
	15-20 5/5 Receives					
15.0	Salar	1-				1
	LOOSE FINGE TO Melana Sanal		A			
15.5	Pleased State		23/06/2582.00L	Street, Square and he	=	1
=	2.5 1 4/4 Drup to moist	010	50,			
16.0	Suprember 14	1 1 1 1 1	den		H	1
=	Sub rounded to Sub Anage he		0310			
6,5	ing"				日	1
=				1		
17.0		-				
. =						١,
17.5						1
18.0					=	١,
					=	
18.5					=	
.0.3					=	
19.0					=	
19.0					=	
ar =					=	
19.5						1
20.0		100				L

Client/Installa		į.	Borehole Nur	nber SSB_7	Page	Page	4 of5		
Project C	III OXUD	****	Inspector Nar		Data				
	Regional SI for PFOS/PFOA	The state of the s			09	1251	12918	j	
Depth	Description of Materials		Headspace Reading (ppm)	Analytical Sample	Notes:				
20.5	SAA 20-25)			NORTH		W10 1 8	=		
21 =	WET -DARK								
21.5		444	0,0	a)				V 2 410	
22.5	v k							14.0	
23.5	н			1					
24									
24.5				_					
25.5	END 07 BOKY			(g#) 2		AND	10 6 120		
26.5	and distribution and it was						2. 2	** * *	
27						.*			
27.5	10.5	(*)							
28.5						¥			
29 =	.9								
29.5						***************************************			


	SIOUX CITY AI	NGB	Oversight Contractor Leidos			SIO S-SB_1		
Project			Driller : Caso	ade G/SIOUX CITY	ANGB	Page		
	Orilling and Sampli		Boreho 160 Bo			Page 1 of 5_ hole Location Description Somes Between Suildry 784 AND 786		
Date/Time Started		16000		Date/Time Fi	inished: 2512ep	18		
Overburden Thickn	Timothy Runkle Timothy Runkle)	Total Depth Z	(ft) 5		
Sample for PFOS/PFOA Analysis				Sample for P	FOS/PFOA A	nalysis		
Sample for PFOS/PFOA Analysis Sample ID: SIO <u>65</u> -SB <u>1</u> -01 Sample Interval: 0 to 2 ft				Sample ID	: SIO@5-5	SB02		
						5 to 17	ft	
Inspector Name		unkle		Inspector Sig				
Monitoring Well ID		Backfill Type Review		Date Backfilled: 9/2812018				
Latitude Longitude					Elevation (ft)		
42,39603	3841	96,370	,76735					
412, 39(603) Notes:		96,370	70735	1	Be			
412, 39(603) Notes:		96,370	×		Bc 2	10%		
412, 39(603) Notes: Sketch:				1	Be		2,5	
412, 39(603) Notes: Sketch:			*	1	C	10%	2,2	
12,39(603) Notes: Sketch: 2			*	1	C	10 m	2,3	
12,39(603) Notes: Sketch: 2	ldri 1861		*		C	10 m	2,2	
12,39(603) Notes: Sketch: 2	ldri 1861		*		C	Corne	7A.5 \$	NOT TO

Client/Install	ation ANG/SIOUX CITY ANGB	Borehole Nur SIO4	nber 85-SB <u></u>	Page	Page 2	THE RESERVE OF THE PERSON.	
Project FY17 Phase 3	Regional SI for PFOS/PFOA	Inspector Nar Timoti	^{ne} ny Runkle	Date:	9/25/18	9125	/ २७४५
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:			
0.5	9-5' 4/5' REcovery 0-1' 2.543/2 Shift Silty clay 2" TABS Plashe 1-2' SAA 2544/3 Moist Soft plashe Silty Clay 1" TABS	0.0	300 Strain				
4	5-10: 3.5/5 Record SAA W WCEASING FUC SAND AND			e e			
6.5	HAR. 10% SAND	0-0					

Client/Install		Borehole Nur	nber 5-SB /	Page	age 3	_ of5		
Project	Regional SI for PFOS/PFOA	Inspector Name anal SI for PFOS/PFOA Timothy Runkle		Date: TJR 9/25/18				
Depth	Qescription of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:				
10.5	10-15 SAA TOR 4/5 Recent					9		
11.0	12-14		e		14	ä	u=	= 1
11.5	FINE SAND HARD	0.0			Ť.			
12.5	Alterating BANDS 03 2,54 613 AND 7,548 414				+ 4	9	1 11 44	1
13.0	D 88 HOT W	***	н					1
13.5					* 4			
14.0	Se will be e		49- 3					
15.0			لمر				4.77	
15.5	FING to M SIMO CO MESSE SIMO					è	K	1
16.0	copped SAMO		57102		5		-	10
16.5	Sispended loose 2.54 4/4	0.0	e Box spile	gar (F.)	108	107	100/0.0	1
17.0			**	0 2		4 = =	1 5 544 5	= 1
17.5	*		9	,			* *****	
18.5	,					•0		
19.0								= 19
19.5	4 4							15
20.0					***************************************			= 20

((

lient/Installation NG/SIOUX CITY ANGB		Borehole Nun	Page 4 of 5					
Project	111 A(400	SIO05-SB_1 Inspector Name		Date: 777 9/15/18				
	Regional SI for PFOS/PFOA	Timothy Runkle		9/28/18				
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:				

20.5	26-25 4/5 Record						- 1	=
20.5	20-23 SAA WET						1	
=								_
21	24-25						- 1	_
=								=
21.5	SATURATED	N 10	6 2			* · · ·	60,83	
	MEDIUM to COURSE							
22	saup	0.6	50 m		- 1	7.7	Way for the	******
	54 2.511						- 1	\exists
22.5	SUB ANGULAR -		F 1 F 1					
=	Sub runded							
23								=
=								\exists
23.5	**							=
******							1	目
24		1					-	
							- 1	-
4.5	a a a a a a a a a a a a a a a a a a a	14.4		1.00	31	*	4 27 12	
\exists								_
25								
								\equiv
25.5				10.00				
=	Town of Born							\equiv
26	- J rawy	a (a)	e e	1.0			634	
=								
26.5								
							- 1	
27							ļ	
								MARKET .
27.5			*				ļ	erapen.
								\equiv
28								=
-								=
8.5							L	\equiv
							- 1	\equiv
29 =							I	
			1				Ī	
. =							- 1	NOTIONAL STREET,
9.5	29	A v					Ì	
							- 1	Shander

Client/Installation ANG/SIOUX CIT	TY ANGB	Oversight Co	ontractor Leidos	Во	rehole N	umber 10 <u>47</u> -SI	B_ <u> </u>		
Project		Driller : Casc		Pag					
FY17 Phase 3 Regional SI	for PFOS/PFOA	ANG	SIOUX CITY ANGB		Page _1 _ of _5				
Sizes and Type of Drilling and S	ampling Equipment	South			le Location Description Le of Bulle 886 14 of Habrers Girss				
Date/Time Started : 9/27/18 8960		l:							
Overburden Thickness	roundwater (ft ここ ¹	22' 301							
			Sample for PFOS/PI	FOA Analys	is				
ample ID: SIO <u>®7</u> -SB <u>+</u> -01 ample Interval: 0 to 2 ft			Sample ID: SIG	067-SB_	02				
Sample Interval: 0 to 2		Sample Interv	al: 18	to Co	½ ft				
Inspector Name Timoti		Inspector Signature	K	T					
Monitoring Well ID: MW -S1007-01	Backfill Type	KOA	Date I	Backfilled:					
Latitude	Longitude		Elevation (f						
42,3955566	-96,3	767512		_	_				
Notes: Sketch:	Boild &	284			1				
C13.55		CANSS				91	NOT TO SCALE		
		V					W E		

Client/Instal	lient/Installation ANG/SIOUX CITY ANGB		nber 7-SB	Page of5		
Project FY17 Phase :	B Regional SI for PFOS/PFOA	Inspector Nar Timot	ny Runkle	Date: 9/27/18		
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:		
0.5	0-5 2/5' Reing 0-1 Sih chy dy chapted houp! 2.54 4/4 1-2 Performed Sub-base		San San Lad			
3 3.5 4 4	Subvoce	0,0			3	
5.5	5-10 No Decrety					
7					8 8 8 9 9	

Client/Instal		Borehole Nur	mber 7-SB_1	Page3 of5		
Project	Regional SI for PFOS/PFOA	Inspector Na Timot	_{me} hy Runkle	Date: 9/17/118		
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:		
- Серин	10=15 3152 :					
=	10-15 7/5 Roscoup 10-12 Chyry Silk with Very think should Soft Most Law plaskerly					
10.5	C' Lyen Silk with					
=	Ve Me That & Award	0,0				
11.0	Soft Maist	0,0	100		+=1	
=	Law plaske, by					
11.5	2.544/2				13	
=	6.21 116					
12.0		1			13	
100						
12.5						
=						
13.0	The state of the s					
=						
13.5	-					
=						
14.0					=	
14.5					L=	
14.3						
=						
15.0	15 21. 6/15 0		-			
	The to reader					
15.5	Fre to ender		66		=	
=	5010 2010		6.6		13.	
16.0	27100 1000 17 5021 20	4	100		1=1	
=	DANIP 1 - 2,54 6/3				1 =	
16.5	7.546/3					
=						
17.0			62			
=			3			
17.5			17			
=			0		=	
18.0			500759-62		- 3	
=						
18.5					= = ;	
E						
19.0					= ,	
19,0						
=					L国,	
19.5						
20,0						

Client/Installa		Borehole Nur	mber	Page Page 4 of 5		
Project	Regional SI for PFOS/PFOA	Inspector Nar Timot	^{me} hy Runkle			
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:		
	70-25 (115)					
20.5					- H=	
=	SAA WET AT 221				1 =	
21	WET AT ZZ			-	Ha	
21.5						
=		60				
22 =						
\equiv					13	
22.5			-		13	
. =						
23						
23.5					<u> </u>	
					=	
24					H	
\equiv						
24.5						
25 =					三三	
=	75-30 5/51					
25.5	75-30 5/51			1		
=	75-76 SAA					
26	SATURATED	6.0			目	
26.5	FINE TO MEDIUM				三三	
	SAND SUB manded					
27	SATURATES		_		- 13	
=	54 4/1				1 =	
27.5						
28						
28.5 _ =						
\equiv						
29			1		13	
29.5						
29.5	ENDOF BORM @ 30					
30	ENDOS 120111					

Client/Installation		Borehole Nur SIO_	nber SB	Page Page_	Page5 of5		
Project	ional SI for PFOS/PFOA	Inspector Nar Timot	ne ny Runkle	Date:			
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:	1		
=					1	\equiv	
30.5			man Product		-	=	
						Ξ	
31							
31.5				100		=	
\equiv				1		=	
32				/		==	
32.5			1				
2.3			1			=	
33 =			-/			三	
\equiv			1		1	Ξ	
33.5		1)				冒	
34		11/				三	
=		107				目	
34.5		14/				=	
. =	11	11				Ξ	
35		1					
35.5 _=	1					=	
\equiv	1						
36 ==		-			-	E	
36.5 _ =	/					=	
						Ξ	
37			- 25-1-			=	
\equiv						Ξ	
37.5		- 7				E	
38 =						=	
\equiv						=	
38.5	1-						
39							
· =							
39.5		-				==	
\equiv						=	
40 —							

lient/Installation ANG/SIOUX CITY ANGB		Oversight Contractor Leidos		Borehole Number				
Project		Driller : Cascade		Page				
FY17 Phase 3 Regional S	for PFOS/PFOA	ANG/SIOUX C	ITY ANGB	Page <u>1</u> of _5				
Sizes and Type of Drilling and S			C1.1	Location Description CORNER OF ICIN 284 Cight F NORTH STA	* o 7			
Date/Time Started : 9/27/2018 093	ϕ		Date/Time Finished: 9/27/2018					
Overburden Thickness	15		Total Dep 30					
Sample for PFOS/PFOA Analysi		P. D. C. C.	or PFOS/PFOA					
ample ID: SIO SB / -01			e ID: SIO	-				
Sample Interval: 0 to 2	Sample	e Interval:	15_to_17_ft					
Inspector Name Timot	hy Runkle	Inspector	Signature	m				
Monitoring Well ID: MW-SIOGC-01 Latitude	Backfill Type	NA	Date Back	filled:				
Latitude	Longitude		Elevation (ft)					
42,3961913	-94.3	375715						
Notes: Sketch:		Builday 254						
	gnes	5		Bortlelm 266				
Taxium			97A55		NOT TO SCALE			

Page 46 of 183

Client/Installation ANG/SIOUX CITY ANGB Project FY17 Phase 3 Regional SI for PFOS/PFOA		Borehole Nur	nber CSB_L	Page of5	
		Inspector Name Regional SI for PFOS/PFOA Timothy Runkle		Date: 9/77/7018	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval		
0.5	Silly Clay Dry Compact low Plasheids 7.54 514	O, G	S. S		
2.5			3		2
3.5					
5	- 5-101 1/5 Recover	810			
6					
6.5 7					7
8					8
9					8
9.5					

Client/Installation ANG/SIOUX CITY ANGB Project FY17 Phase 3 Regional SI for PFOS/PFOA		Borehole Nur	nber GSB <u>@</u> (Page3 of5	
		Inspector Name		Date: 9/27/18	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval		
10.5	No Recovery				=
=	No Recovery				\equiv
11.0	0				
=		1			\equiv
11.5				or parameters and	
\equiv					\equiv
12.0					
\equiv					=
12.5				-	\exists
\equiv					\equiv
13.0				-	
=				1	
13.5					
					\equiv
4.0					=
\equiv				1	目
14.5		1			
=					\equiv
15.0					
15.5					\equiv
15.5	4/5		10		
16.0	15-20 4/5		0		\equiv
	WET 15-16		3100		=
16.5	DAMP 16-19		de		\equiv
	100	010	2200		=
17.0	15-14	000	,		Ξ
	Clayery Siltwith Spond very Fine lour 5/4				=
17.5	a and vary fine				\equiv
=	love -				\equiv
18.0	10-11-5/4				=
=	16-19				\equiv
18.5	C III of				\equiv
=	Setty chy				\equiv
19.0	1042514 WHIT		de a		=
=	2.54 4/2 MoHles				\exists
19.5	CO1 7/2 FORTO				=
=	Soft plastic				\equiv
20.0					-

Client/Installation ANG/SIOUX CITY ANGB		Borehole Nur	mber @-SB@(Page Page	_4_ of _5		
Project	Inspector Name se 3 Regional SI for PFOS/PFOA Timothy Runkle		hy Runkle	Date: 9/27/18			
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:			
Ξ	3/5 Recovery,					I	i vo
20.5	3/5 Recovery					E	2
21 =	20-21/5 25-7 Tar						2
\equiv	2.54 CIN						-
11.5	Sett chap plastic						2
22 =		0.0					2
	21.5-23						
22.5	54413						
23 V	the to Course		1			一三	7
23.5	54413 WE TIME to COARSE SATURATED					$ \Xi $	
\equiv	SATURATED		*				
24						HE	3
4.5							
Ξ						IE	
25						十三	-
5.5	SAA					= =	-
=	21						
26						TE	
26.5		-				4=	1
		2 0				日三	
27 =		0,0					1
7.5						-	100
28 =							
8.5							-
29 🗏							
	- of a					E	
9.5	END OF B		-			I	1
30	136						

Client/Installation ANG/SIOUX CITY ANGB Project FY17 Phase 3 Regional SI for PFOS/PFOA		Borehole Number SIO©r-SB@ [Page5 of5_	
		Inspector Name		
Depth	Description of Materials	Headspace Analytical Samp Reading (ppm) Interval	le Notes:	
			,	□■
30.5			-	
31 =				
			/	
31.5			1	
32 =				三旦
≡				1 =
32.5				- =
33				LE
=		11/		13
33.5		N/		一目
34		1/ 18		一日
=	/	6/ 109		
34.5		101		
35 =	/	CIL	1.	目
∃				
35.5				
36	/			H
36.5				一旦
56.5				
37				
37.5				L国,
目				=
38				- 1-3
38.5				
	L			
39				
39.5 _				
=				
40				

Client/Installation ANG/SIOUX CITY A	ANGB	Oversight Con	tractor Leidos		Borehole Nur	nber 0 <u>0</u> 4-SE	3_1
Project	The second section of the second section is a second section of the		Driller : Cascade		Page		
FY17 Phase 3 Regional SI for			SIOUX CITY AN	GB	Page	_1 of	_5
Sizes and Type of Drilling and Samp	ling Equipment		4	SW CO	cation Descript BRNGR OF SET BETW 11-64	Roup	
Date/Time Started : 9 / 27 / 2018 174	5		Date/Time Finis タクマクク				
Overburden Thickness WA	Depth to Gr	oundwater (ft) この		30			
Sample for PFOS/PFOA Analysis		S	ample for PFO	S/PFOA A	nalysis		
Sample ID: SIO SIO SIO			Sample ID:		The second secon		
Sample Interval: 0 to 2 ft		5	Sample Inte	erval: _	6 to 18	ft	
Inspector Name Timothy I	Runkle		nspector Signa	2	nec	7	
Monitoring Well ID :	Backfill Type	e	Da	ate Backfil	led :		
MW-S1004-01		NA		N	4		
Latitude 42,3947636 Notes:	Longitude	755100	Eli	evation (ft			
Sketch:							
Town Long	B						NOT TO SCALE
							"WE

-

-

1

ilient/Installation ANG/SIOUX CITY ANGB	Borehole Nur SIO	nber '-YSB_1	Page <u>2</u> of <u>5</u>	
roject Y17 Phase 3 Regional SI for PFOS/PFOA	Inspector Name egional SI for PFOS/PFOA Timothy Runkle Headspace Analytical Samp		Date: 9/77/18	_
Depth Description of Materials	Reading (ppm)	Interval		
Depth Description of Materials 0-5 4/5 (Record 1 Silly clay Dry Compact low parsheity 2 2 4 25 Very 3 TIFF Clay WARD MAKES 2" TABS	see /	al all all all all all all all all all		
55-10 3/5 Recovery 5.5 SAA 6.5 Shiff compact Clay 2.54-5/4 Clay 2.54-5/4 LUCTILE PLASTIC MAKES 14 8.5 7-3' Silty clay damp 2.54 5/4 Plastic makes 1" to				

Client/Installation ANG/SIOUX CITY ANGB		Borehole Nur		Page3 of5		
AND AND ADDRESS OF A COMPANY OF A SECOND STATE O				Date:		
Project FV17 Phase 3	Regional SI for PFOS/PFOA	Inspector Name Timothy Runkle		9/27/18		
Tar Tildae 3	megianian in the safet seri	Headspace	Analytical Sample		T	
Depth	Description of Materials	Reading (ppm)	Interval	1404A-226A(I)		
-	10-15 315 necesy					
	- SI Meccuga				1 =	
10.5					=	
	16-11 SAA					
11.0			-	the state of the s	$\vdash \exists$	
\equiv	11-190					
11.5	5-11 TOK					
=	SH TIK	0,0				
12.0	Clayer Silt with Some very fine SAND	. 0				
-	Chyey Silv with					
\equiv	STATE LAW DIE STATE					
12.5	some very fine some					
	254413 And					
13.0	2544/3 And				$+ \exists$	
=	2,54 5/4				$I \equiv$	
13.5	MED, STIFF NO				_=	
=	Phstic					
4.0						
=					$I \equiv$	
4.5		-		111 111 1111		
=						
15.0				the second secon	-	
=	15 0 01				\exists	
15.5	15-20, 3/51					
-	The second second					
	15-20: 5/51 Very FINZ TO MED CORRESAND	1			1 =	
16.0	MED COORD SAMP					
=	SubRounded	-			=	
16.5	DAMP	0.6			H	
\equiv	256011		06			
17.0	SubRounded Damp 2,54 614		500kg		_	
			200			
17.5			0		=	
'' ['] =			.0		=	
=			2		=	
18.0			The same of		=	
					=	
18.5				A	$+ \exists$	
=					13	
19.0					日	
=					=	
. =						
19.5	-					
20.0						

Client/Installation		Borehole Number SIO©4SB \		Page A of F		
NG/SIOUX CITY ANGB				Page _4 of _5		
roject		Inspector Name		Date:		
Y17 Phase 3	Regional SI for PFOS/PFOA		ny Runkle	9/27/18		
		Headspace	Analytical Sample Interval	Notes:		
Depth	Description of Materials	Reading (ppm)	interval			
=	WM-25' 11/500					
20.5 _ =	20 - 62 4/3 varcay					
=	215-25' 4/5 Recay SAA WET					
=	SAA WET					
21	production of the same of				+=	
=						
1.5					_=	
=						
22	ATT TO THE PARTY OF THE PARTY O					
=						
2.5						
23 —				l -		
=						
3.5					-	
=						
					LE	
24					_	
	Fluming SANSS AT BOTTOM OF HOLE					
4.5	AT BOTTOM OF HOLE				-	
					\Box	
=					\Box	
25						
	END OF BORY AT				=	
5.5	25					
=						
26						
20 ===						
=					-	
6.5						
=					=	
27 _ =						
=					\Box	
7,5					-H=	
=						
28 =						
			/			
8.5				be the second se	$+\exists$	
29 _=						
" ==					_	
=					\exists	
9.5						
	16					
_						

Client/Installation ANG/SIOUX CITY ANGB Project		/SIOUX CITY ANGB	
Depth	Description of Materials	Reading (ppm) Interval	Notes:
30.5			=
=			/ / =
31			
\equiv			1 / 13
31.5			a constant of an artist of a arti
\equiv			1 / 13
32			
\equiv			1/ 13
32.5			/
=			1 13
33			
=			1 13
33.5			
34			
34			
34.5		1/1	
35		11/19	=======================================
	1.	1/1/0	1 13
35.5	(V	VIV"	
\equiv		1000	
36	/		
36.5			=
=			1 13
37			_
=			1 13
37.5	/		
=			1 13
38			
200			
38.5			
39	/		=
=			
39.5			
40			=

Client/Installation ANG/SIOUX CITY ANGB		Oversight	Contractor Leidos		Borehole Nun	nber O <u>O</u> 4-SB_Z
Project		Driller : Ca			Page	
FY17 Phase 3 Regional SI f	AN	IG/SIOUX CITY	ANGB	Page	_1 of _5	
Sizes and Type of Drilling and Sai				host	ocation Descript Euro of RAM- of Taki L GPASS	no no nay access
Date/Time Started:	300		Date/Time	Finished:		
Overburden Thickness	Depth to G	Groundwater (ft)	Total Dept	h (ft) 25	
Sample for PFOS/PFOA Analysis			Sample for	PFOS/PFOA	Analysis	
Sample ID: SIO <u>44</u> -SB <u>?</u> -	01		Sample I	D: SIO	-SB <u>Z</u> -02	
Sample Interval: 0 to 2 f	t		Sample I	nterval:1	0 to 12	ft
Inspector Name Timoth	y Runkle		Inspector S			
Monitoring Well ID :	Backfill Typ	pe	7	Date Backf		
MW-SIU1-02		MM			WA	
Latitude 42,3927821	Longitude	72954	r.	Elevation (ft)	
Notes:						
Sketch:						
	1					
		1	Pany			
			1			
			×			
), ',	NOT TO SCALE
				/	Zw.	

Client/Instal	Client/Installation ANG/SIOUX CITY ANGB Borehole Number SIO <u>9</u> 4-SB_2 Project Inspector Name FY17 Phase 3 Regional SI for PFOS/PFOA Timothy Runkle		mber 4-SB_2	Page of5	
Project FY17 Phase 3			ne hy Runkle	Date: 9/28/18	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:	
0.5	0-5 4/5 Reovery C-1 Silly Clay Hamp Some pelobles STIFF PINSTIC WARES 1" + Ab's 2.54 4/2	0:0	and the contraction		
2 = = = = = = = = = = = = = = = = = = =	1-31		00%		
3 =	compadelly plishe				
4	3-41 SAA bul 2.54 5/4				
5	5-10' 5/5 Recovery				
	5-10' 5/5 Recovery 5-6 SAA				
6.5 7	Clay, Very Shff Maks I" trass	0.0			
8	plastic 2.54 5/2 with 5% 104R 5/4 Mothes				
9					
9.5					

Client/Installation ANG/SIOUX CITY ANGB Project FY17 Phase 3 Regional SI for PFOS/PFOA		Borehole Nur	nber Y-SB Z	Page of5	
		Inspector Name 3 Regional SI for PFOS/PFOA Timothy Runkle		Date: 9/28/19	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval		
=	10-15 4/5' Recovery				
10.5	_ measesq				
-	10-11				
11.0	2,54514		2		= 1
=			Sour Server		
11.5	SANGE CLAY, VERY FINE SAND		950		
	MED PLASTIC		COH		
12.0	1/2" TASS	0,0	5		
=	11-19	- 1			
12.5	2,545/4				
					=
13.0	Clayey Silt with Firesand loose				=
13.0	WET				
13.5	13-19				=,
13.5					
14.0	2,54/54				=,
14.0	Silty Clay	Married States			
. =	Silty Clay NET , SOFT				= 1
14.5	MGD PLASTIC				
				_	
15.0					Ξ,
=	15-20 515 Recovery				ΙΞ.
15.5	12.11 1				1=1
_	15-00 2.594/9				13
16.0	WITH 201, 1041 4/4				1=1
=	nottly				ΙΞ
16.5	MAKES PUI WORMS				1 = 1
_	Whites of wollers				
17.0	16-19	0,0			1
=					
17.5	WET SOFT LOOSE				- H= 1
=	CLAY VEM PLASTE				
18.0	- 50/50 1041 4/6 And	-			
=	5451			3	
18.5	3131				
-	10 0 2			500	
19.0	19-20'	-			1
=	54511 011				
19.5	DITTY WITH				1
=	VEW THE SAND				
20.0	Moist, Loose				$\Box \exists_2$

Client/Installation ANG/SIOUX CITY ANGB				Page4 of5	
Project	Regional SI for PFOS/PFOA	Inspector Nar Timot	^{ne} hy Runkle	9 /28 /18	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:	
= =	26-25 4/5' Recover				\equiv
20.5	MEDIUM to coarse		party and the		=
=	SAND				Ξ
21	Sulp rounded to				=
Ξ	Sub myolm	018			=
21.5	2.59 5/4				=
Ξ					\equiv
22	At 23'			April II	$\vdash =$
=	A+ 23'				Ξ
22.5	2,54611				\equiv
Ξ	WET				
23	201				
23.5					=
					=
24 =					
=					=
24.5					三
=					Ξ
25					=
Ξ					\exists
25.5			-		=
=	Enopoein al				
26	OF				=
=	03				\exists
26.5	LE DIE	and the second			=
=					
27					
_ =					=
27.5					Ξ
28					
20					=
28.5			Description of the second		=
-					=
29			rail M		=
=					\exists
29.5					-
=					\equiv
30					

Client/Installation ANG/SIOUX CITY ANGB		Borehole Number SIOSB_	Page5 of	5
Project	ional SI for PFOS/PFOA	Inspector Name Timothy Run	Date: Ikle cal Sample Notes:	
Depth	Description of Materials	Reading (ppm) Int	terval Notes:	
30.5				
31 =				4
31.5				
32			1	目
32.5				冒
33 ====================================		1111		
34		1	ಲ	
34.5		11/100		
35		0		
35.5				
36		-		一目
36.5				
37.5				
38				
38.5				
39				
39.5				
40 =				

Client/Installation ANG/SIOUX CITY	ANGB	Oversight Co	entractor Leidos		Borehole Numl	ber 1 <u>206</u> -SI	B@1
Project		Driller : Casc	ade		Page		
FY17 Phase 3 Regional SI for	PFOS/PFOA	ANG	SIOUX CITY AND	3B	Page_	of	_5
Sizes and Type of Drilling and Sam	pling Equipment		3	South of	Rully Nerver	235	
Date/Time Started: 9/29/18 (08/04)			Date/Time Finis				
Overburden Thickness レル	Depth to Gr	roundwater (ft) ての!	То	tal Depth (i てら	ft)		
Sample for PFOS/PFOA Analysis			Sample for PFOS	/PFOA Ana	ilysis		
Sample ID: SIO <u>32</u> -SB <u>31</u> -0	1.		Sample ID:				
Sample Interval: 0 to 2 ft			Sample Inte	rval: 16	to <u>(&</u> f	t	
Inspector Name Timothy	Runkle		Inspector Signat		ec		
Monitoring Well ID :	Backfill Type	e	Da	te Backfille	d:		
MW-51002-01		NA		N	A		
Latitude 42,30 53194 Notes:	Longitude -96.	373493		vation (ft)	-		
Sketch: \$\\$\tag{735}		pre-		/	253	7	
Romp			9 m	10			

1

Client/Instal	lation ANG/SIOUX CITY ANGB	Borehole Nur SIO	nber <u>R</u> -SB <u>Ø</u>	Page of5	
Project FY17 Phase 3 Regional SI for PFOS/PFOA		Inspector Name Timothy Runkle		Date: 09/29/2019:	
1		Headspace	Analytical Sample	Notes:	\Box
Depth	0-5 3 15 Recovery	Reading (ppm)	Interval		13
Ξ					\equiv
0.5	OBOS' Clayey Silt dry, loose	transmit he			
Ξ	dry loose		P. S.		
1	2,544/4		35		
1.5			ob state of		=
1.5	0.5'-1'		0		=
2 =	SAA will grave 1 2010, Schoolmer 10 Schoolmer		2		=
· =	2010 Substitute 10	0,0			
2.5					日
=	1'-3'				\equiv
3 _	2.544/2				=
\equiv	STIFF CLAY CLAMP				
3.5	plashe				=
\equiv					
4 _=					=
4.5					日
- =					\equiv
5					\equiv
. =	5-10 2,5/5 Recover				
5.5	Total CAA				
, =	5 C SAA				
° =		0.0			
6.5	6-7.5 Clauses	Occ			旦
=	SIH WITH SAMP				
7 =	2154 5/4				
=	201 3/4				
7.5	Dry Compact	es l			=
=					
8					
=					
8.5					
9 —=					
=	[*, - E				
9.5					
==					

Client/Installation ANG/SIOUX CITY ANGB		Borehole Nur	nber Ł-SB <u>M</u>	Page3 of5	
Project FY17 Phase 3	Regional SI for PFOS/PFOA	Inspector Name Timothy Runkle		Date: 69/29/2018	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:	
=	10-15 4151				
10.5	10-15 415'			-	\exists
=	10-11 SAA	0,0		_ [=	=
11.0		0,		-	\exists
=	11 -17				=
11.5					\exists
=	Very Fine SAND				=
12.0	war loose				=
=				1	\exists
12.5	7,54 5/4				
=	17-141				=
13.0					\exists
	2,54 5/3				
13.5	alkes survers				\exists
	and les Surres				=
14.0	soft				
	2.14				=
14.5					\exists
					=
15.0		- 4			\equiv
\equiv	15-20 5151				\exists
15.5	15-20 5151				\equiv
=	15-16 SAA				=
16.0 _ =	SAA				\equiv
=					=
16,5 _ =	16-20		20	-	
	MOD to coase		No.		=
17.0 _ =	SANP		Stoles startes		\exists
	Subrancal to subanquea	010	o'		
17.5	Romp		0,	=	
=	2,54614		5		\exists
18.0	-		->		\exists
=					
18.5					
19.0				=	
15.0				=	\exists
19.5					\exists
19.5					3
20.0					=

Client/Installation		Borehole Nur SIO	rber C-SB <u>@</u>	Page4 of5	
roject	gional SI for PFOS/PFOA	Inspector Name Timothy Runkle		Date: 9/29/2018	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval		
= 2	SAA, WET				目
20.5	SAA WET			_	- $=$
\exists	3,37				1 =
21		1-1			+ $=$
=					
21.5			Academic Name (
=					\Box
22 —) in the contract of		
=					\Box
22.5					
\equiv					1 =
23					
\equiv					
13.5					E
\equiv					
24					T国
=					
4.5					
25					
" = 7					
25.5	Floury Sinds IN NEXT POST. END BORING AT 251				
	pext hosp.				
26	END BOKING AT 25'				
6.5					旦
27 =					
					I =
27.5					一三
					ΙΞ
28 =					
18.5					=
\equiv					\equiv
29 ==					_=
\equiv					
9.5					=
\equiv			4.7		
30					

Client/Installation		Borehole Nur SIO	SB	Page5 of5 /	
Project FY17 Phase 3 Regional SI for PFOS/PFOA		Inspector Name		Date:	
		Timot	ny Runkle	/	
		Headspace	Analytical Sample	Notes:	
Depth	Description of Materials	Reading (ppm)	Interval		
=				/	\equiv
30.5				/	_
				/	
\equiv		4		/	
31 —				1	
=					
31.5				/	=
				/	
32					=
" =			1		
=			/	1	
32.5					
			1		
33			1		\vdash
=			1		
,,, =		1 /			
33.5		1			
=		1	41		
34		WW.00	V		=
=		A PIN ICU			
34.5	/	VI			
	1	1114			
=	My	0110			
35 ==	. 1				
	/0				
35.5				10.12	$\vdash \exists$
=					\Box
36					_
50					
=					
36.5	/			the state of the s	
=					
37					$\vdash \exists$
	/				
37.5	/				
37.3	/				
= /					
38 — = /				- 116.00	
=/		19 1			
38.5					_=
/=					
/=					=
39/				·	
39.5					=
=		3			
-					-

Client/Installation ANG/SIOUX	CITY ANGB	Oversight (Contractor Leidos	Bore	hole Number
Project		Driller : Cas	scade	Page	
FY17 Phase 3 Regional	SI for PFOS/PFOA	AN	IG/SIOUX CITY AN		Page 1 of 5_
Sizes and Type of Drilling and	d Sampling Equipmer	nt	В	orehole Location South of South GNASS New	Description July 254 m 4 to Ramp
Date/Time Started : 9 /29 /12018			Date/Time Fini		
Overburden Thickness	Depth to	Groundwater (otal Depth (ft)	
Sample for PFOS/PFOA Analy			Sample for PFO	S/PFOA Analysis	
Sample ID: SIO <u>OI</u> -SB	<u></u> -01		Sample ID:	SIODI-SBI-	02
Sample Interval: 0 to	2 ft		Sample Inte	erval: <u>/</u> 6_to	18 ft
Inspector Name	othy Runkle		Inspector Signa	ture -2	
Monitoring Well ID :	Backfill T	vpe	l _D	ate Backfilled :	
MW-51001-0		WA		N	A
Latitude	Longitud		EI	evation (ft)	
Sketch:	/				
		25	N		
	3 rms)		Gruss)	252
8	BMB		•	<i>\\</i> .	NOT TO SCALE

Client/Instal	lation ANG/SIOUX CITY ANGB	Borehole Nur SIO	nber 2 -SB	Page of5	
Project FY17 Phase :	3 Regional SI for PFOS/PFOA	Inspector Nar Timot	hy Runkle	Date: 9/29/2018	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:	
	0-5' 315 ' Recover				
0.5	G-0,5" 2,58 43				=
	lose med plash				E
1 =	loose , had plastic		2/01		TE
1.5	0.5.1"		Stephon Strain		三
E	SAND FINE TO MEDIUM		2000		=
2	WITH 5% Rounded Relates		2		H
2.5	2,54 5/4 DAMY	0.0			Ξ
=	14_24				
3 _=	Sitty other TOR Chayer Silt complet France, burglastic				三
	Claying Silt compact				13
3.5	DAME , GUDGINSHE				TE
4 =					=
	34-34				
4.5	Clay STIFF			- II-c	-=
E	Clay STIFF Platic, Maks 3" works				
5 =	3 400-03				E
5.5 _					E
Ξ	5-104 515 Record				1 =
6 =	5-10				TE
6.5	Chy 2,54 4/4 STIFE, Pushe Maks 2" worms	0.0			
E	STIFE, Puthe	0.0			
7	maks 2" worms		h		-=
. ≡	Direct				
7.5					TE
8 _=					三
Ξ					
8.5					E
, =					
E					
9.5					
10	1	1			

Client/Installation ANG/SIOUX CITY ANGB		Borehole Nur SIO	mber 81-SB_1	Page3 of5	
Project FY17 Phase 3	B Regional SI for PFOS/PFOA	Inspector Nar Timot Headspace	me hy Runkle Analytical Sample	Date: 9 129 12018	
Depth	Description of Materials	Reading (ppm)	Action to the Additional Control of the Control of		
_	10-15 4/15 Recover				13
10.5	_				
	16-11				=
11.0	50/50 METRE				
	50/50 METTLE 1048 4/6 AND				
11.5	O minute.				=
	Soft Chy uv fine				=
12.0	SYNC,				
12,0					
12.5	12-12				
12.5	11-12 2.54 5/4				-
13.0	Soft Chay plashe washes 2"worm damp	0.6			=
13.0	Dlashe makes 2"worm				
13.5	group				=
13.5					
=	13-14	1			
14.0	E CON E COL CAL				三
Ξ	VERY FIVE Silly SAND 2.54 5/4				
14.5	2.54 5/4	-			
Ξ	WET				
15.0					
=					
15.5	15-20 415 "Revovery	-			
=	1/3 1440				1 =
16.0	10.17		-675-		
_	13-11 2.54 5/4	010	6.0		
16.5	C. The day				_
=	Silly Con			Stage .	. =
17.0	SOFF DIASHE MANS		Ol-	1	
=	Soft plastic makes		350015331.02		13
17.5			(a)		
=	17-19		20		13
18.0	154312	-			
	and the The				
18.5	Sith dry wet namp Soft med physic				
	Soft ned plastic				
19.0					- 13
-					
19.5					=
				V.	
20.0	Compared to the Control of the Contr			The same of the same of	

Client/Instal		Borehole Number NGB SIO <u>∅</u> \-SB_\(\frac{1}{2}\)		Page4 of5		
Project	oject Inspector Name 17 Phase 3 Regional SI for PFOS/PFOA Timothy Runkle			Date: 9/29/2018		
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:		
E	20-251 5/51				員	20.5
21 _	Silly Chy 543/1 Soft/lase, Plants WET Of 17'					21.0
21.5		0,0				21.
22 =						22.
22.5					3	22.
23 =		*			3	23.
23.5		-	_		=	23
24				/	∄	24
4.5			*			24
25 =	_25_36 5/5 Sitty clay saturated loose/soft plastic					25
25.5	loose/soft plastic	Oco			\exists	25
26 =					目	26
6.5					\equiv	26
27			84	Sing-	Ħ	27
7.5					\equiv	27
28 ====================================					\equiv	28
29	1 Porny				\equiv	29.
9.5	END of PRONTY				\equiv	29.
30						30.

1

Client/Installation ANG/SIOUX CITY ANGB		Borehole Number SIO -SB_	Page5 of5
roject	the Inspector Name Phase 3 Regional SI for PFOS/PFOA Timothy Runkle		Date:
Depth	Description of Materials	Headspace Analytical S Reading (ppm) Interv	Sample Notes:
30.5			
31			/
51.5			
32			
2.5			
33 = = = = = = = = = = = = = = = = = =			
34			
34.5		NV 2018	
35		M	
35.5		10/0	
36 =	/		
37			
37.5			=
38			
8.5			
39			
39.5	/	-	
40 =			

Client/Installation ANG/SIOUX CITY	ANGB	Oversight Contra	ctor eidos	Borehole Number	-SB <u>2</u>
Project		Driller : Cascade		Page	
FY17 Phase 3 Regional SI for Sizes and Type of Drilling and San Geoprobe			IN FR	Page 1 Location Description St of Buildy ZE (IIE GITATS Sound	34
Date/Time Started : 4/23/16 /	G45		e/Time Finished : 25/18		
Overburden Thickness	Depth to G	iroundwater (ft) 20	Total Dept	25	
Sample for PFOS/PFOA Analysis			ple for PFOS/PFOA	I - I de la desa	
Sample ID: SIO24SB_2-0)1		mple ID: SIO	The second second	
Sample Interval: 0 to 2 f	t	Sai	mple Interval: _	15 to 17 ft	
Inspector Name Timothy	/ Runkle	Insp	pector Signature	ney	
Monitoring Well ID : 心み	Backfill Typ Benja		Sate Back	filled: 5/Zeols	
Latitude 42,39632576 Notes:	96.3	7697846	Elevation (
Sketch:		of lelups			
		(3)			
		CI MASS			
					NOT TO SCALE
		TAXINA	7		₩. DE

(

Client/Installation ANG/SIOUX CITY ANGB		Borehole Nur SIO	nber ×SB_Z	Page _ 2 _ of _ 4		
Project Y17 Phase 3	Regional SI for PFOS/PFOA	Inspector Name Timothy Runkle		Date: 9/251/8		
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:		
3	Description of Materials O-5' 4/5' RECOVERY O-0.5' 704R/2/1 HARD SITY Chy, ROOTS SENT-PLASHE COLLEGE AT 0.5' O.5'-2 MUTTICS 2.543/2 AND 54R 3/2 HARD RAI PLASH SITY CLAY 2" TABS 2-4' SOFT, DAMP 2.544/4 SITY CLAY PLASTIC 2" TABS	6,0	Interval		0 0 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4	
5 5.5 5.5 6 6.5 7 7.5 8 8 8.5 9 9.5 9.5 9.5	5-101 3.5/5 Recovery SAA HARLD 5-6-3 2.544/4 6-7 Increasing silty elsy SHI SAMOTSIN SOME FINESAND SOH	ao			5 5 6 6 7 7 7 8 8 8 9 9 9	

Client/Install		Borehole Nun	nber	Page Page 3	of 4	
ANG/SIOUX	CITY ANGE	Inspector Name		Date:		
Project FY17 Phase 3	Regional SI for PFOS/PFOA	PFOA Timothy Runkle		9/25/18		
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:		
10.5	10-15 4/5 RECORD	L.			N.S.	
11.0	10-12' SAA		78		v. —	1
11.5	12-14	G.0	0.0			1
12.0	Alternating BAND 2.5 4 C/3 AND					
13.0	7.5 4R 416			****	*** ** * * * ***	
13.5			¥* -	*** ** **		=======================================
14.0		9	,	K X 64	t: 1:11.15	= 1
14.5	в н		ų.		a - 1-17-01	1
15.0	15-20 5/51 Roccup	, ax			4844.0	
15.5	Five to Medera		736		*	
16.5	Subsected - Submajolan 2.54 414	6.0	4500 B		** ****** ******	1
17.0	Parise , loose		2015	11		<u></u>
17.5					ES 30 1 N	- ∄ ¹
18.0	*	1				
18.5	ž.					1
19.0			¥		*	
19.5					*1 7.0	

Client/Installation		Borehole Nur		Page			
ANG/SIOUX (Project			Inspector Nar		Page 4 of 4		
1	Regional SI for PFOS/PFOA Description of Materials		Timot Headspace Reading (ppm)	Analytical Sample Interval	9/25/18 Notes:		
Depth	20-25 5/5 nee	orig	SALES AND DESCRIPTION OF THE PERSON NAMED IN COLUMN 1	interval			
20.5	SAA	V			9-1	· - =	
21 =	SATURATED		6			目	
21.5		e I	0.0	1 - 400 km	1 11 11 1 10 21	=	
22 =		ş.	lie is		44. A		
22.5	Communication of the Assessment			240	a (644) +		
23		n 199			ha i a and		
23.5	1.4 × 1.5 ± 5.					=	
24		947				H	
24.5							
25			-		Tr.		
25.5	END OF BORING				A V = 1 VANOT		
26		41	ž.) V = *		
26.5			2 V	- 4		E	
27					· · · ·		
7.5						昌	
28		* 1					
28.5							
29							
9.5							
30							

Client/Installation ANG/SIOUX	CITY ANGB	Oversight	Contractor Leidos		Borehole Nu S	_{imber} IO <u>∳3</u> -SE	2
Project		Driller : Ca		an A. Keron	Page		vds
	ANG/SIOUX CITY ANGB t FY17 Phase 3 Regional SI for PFOS/PFOA Ind Type of Drilling and Sampling Equipment Secreba Time Started: 26/18		NG/SIOUX CITY	- Contractor	The state of the s	e_1 of	_4
Sizes and Type of Drilling and	d Sampling Equipment			Neere	Location Descrip FAST or a USS OF EDGRE	wildy 2	
Date/Time Started:	1966		Date/Time I				
Overburden Thickness		roundwater (20	(ft)	Total Dep	th (ft) 24		
Sample for PFOS/PFOA Analy	ysis		Sample for I	PFOS/PFOA	Analysis		
Sample ID: SIO					-SB <u>2</u> -02	•	
	2 1t				15 to 17	_tt	
Inspector Name	othy Punkla		Inspector Si	-	rec-		
Monitoring Well ID :		10		Date Back	filled :		
					26/18		
Latitude		onice		Elevation			
		74664	130		92,00		
Sketch: GCAS	s						
						Grass	
				6			
	Con	CKETE					
Builde	211						NOT TO SCALE
tones	7		1	1			W NE

Client/Instal	lation ANG/SIOUX CITY ANGB	Borehole Nur SIO	nber <u>S</u> -SB <u>Z</u>	Page of4	
Project FY17 Phase 3	Regional SI for PFOS/PFOA	Inspector Name Timothy Runkle		Date: # 9/26/18	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:	
0.5	0-5' 515 Retry				
=	0-1'				
1 =	104R 3/Z	-			
1.5	STIFF Sily Clay MED PLASTIC	-	and		
2 =	MAKES 2" TABS	0.0	30		=
2.5	1,-3,		30		
3	CONRSC SANGE				
=	Sub-Reundoel'				
3.5	104R 4/4				冒
4 =	3'-5'				\exists
4.5	Silty 3'-4' AND CLAP/SOFE				
5	VOLY I ARD DRAY O-180 PLASTIC			بالمسيد با	
5.5	5-10'				
6	No RECOVERY STEP OF HOLE G" KUD REPLAN				
6.5	5-10' 415 Recony	0.0			\exists
⁷ =	2.54 4/4				=
7.5	2154 4/4 Clay clamp MEDILY Plashe STIFF				$\frac{1}{2}$
8					
8.5 =					\equiv
9 =					
9.5					Ξ
=					\exists

Client/Instal		Borehole Nun	nber S-SB_Z	Page3 of4	
Project	3 Regional SI for PFOS/PFOA	Inspector Name Timothy Runkle		Date: 69/26/18	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:	\perp
	16-15' 41/5' RECOVERY				
10.5	10-121 SAA				目
11.0	12'-14' SAA SOFTER	0,0			目
11.5	SOFTER				目
12.0	14 TSA				H
12.5					固
=					
13.0					目
13.5			-		目
14.0	entre .				H
14.5		1			H
15.0					目
15.5	15-20) 4'15' Preme				且
Ξ	15-15,5 SILTENATY VERY FINE SAND		1002		
16.0	2.54 5%	-	25.		目
16.5	Rondel dung solt		81003-52		目
17.0	15.5-17.5 Clar	0.0	3		昌
17.5	Soft plastic	0.0			昌
18.0	Soft plastic				
18.5	17.5-19				
9.0	Clay Vey Dlastic				
Ξ	3 Ju wears				
19.5	5441 mel				目
20.0	6 7.54 4/4 middles "				1 =

Client/Install		Borehole Nur	nber Š-SB_Ž	Page4 of4		
Project	Regional SI for PFOS/PFOA	Inspector Name Timothy Runkle		Date: @9-26-R@12		
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:		
=	20-24 4 kg Recoupt				lΞ	
20.5	20-21'				-	
=	20-21				E	
21	57 6/1 Clay					
\equiv	20-21' 54 6/1 Cly WET VERT SOFT at 81/45/11 31 WORKERS					
21.5	a Plasti 3" worms				=	
=	21 - 22.5' Silty (lay with SAND I YENTER SAND 54 3/1				=	
22	Eller Clean with			0	=	
=	SAND . HOME				1 =	
12.5	SAND 54 3/1	300			=	
=	VET				1 =	
23 ==	27.5-24		-		TE	
=	2.54 514				=	
23.5	MODIUM SAMO 10038	1.00				
24	SOFT, WET				=	
24	77					
24.5	EMP OF BORY					
=	MEDIAN SANDJUR				=	
25 =						
					=	
25.5					=	
=		- 1			IΞ	
26					\vdash	
=					IΞ	
26.5					=	
\equiv		3				
27		1			H	
\equiv						
27.5			-			
=					lΞ	
28						
=					=	
28.5						
Ξ						
29 =		(t)	140.		E	
=					\equiv	
19.5					E	
30						

Client/Installation ANG/SIOUX CITY AN		versight Contractor Leidos		SIO@5-SB
Project FY17 Phase 3 Regional SI for PF	- 000 ES	riller : Cascade		Page 1 of 4
Sizes and Type of Drilling and Samplin		ANG/SIOUX CIT	Borehole Loca	tion Description OF BARINA 241 LEFT OF THE RAMP FALLY THE TRAMP
Date/Time Started: 9/24/2015 1000			Finished:	
Overburden Thickness	Depth to Groun	ndwater (ft)	Total Depth (fi	
Sample for PFOS/PFOA Analysis Sample ID: SIQ23-SB_1-01 Sample Interval: 0 to 2 ft Inspector Name		Sample		
Timothy Ru			To a	
Monitoring Well ID :	Backfill Type Benton	te	Date Backfilled	
Latitude 42,38953938 Notes:	Longitude 46,375	26824	Elevation (ft)	65
Sketch:		Boildon 241	Concer	NOT TO SCA

Client/Instal	lation ANG/SIOUX CITY ANGB	Borehole Nur SIO	nber <u>3</u> -SB <u>↓</u>	Page of4	
Project FY17 Phase 3	3 Regional SI for PFOS/PFOA			Date: 9/26/2018	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:	
=	6-10-0x				\equiv
0.5	2-5 315 REWING			7-1 I I I I I I I I I I	$-\equiv$
	C-1		la		
1 =	Suite city		th'		TE
1.5	0-5 36 Reway 0-11 Clayer Sill Silly clly, 2,5 43/3		No. State of the s		上三
	DRY STIFF THUSS	0.0			\equiv
2 =	runers 1. TIAISS		5		=
	11-21				
2.5	COARSE SILLY SAND WITH STO PERRUEN 10TR 313				TE
3 =	SAND WITH ST.				三
=	104R 313				
3.5	PARPLIOUSE				
=	7-31				
4 —	COARSE SAND LEWES				TE
4.5	Moist make 1" TABS 7.544/4				
" =	Sem plaste				
5	The state of the s	-			$-\equiv$
Ξ	5-10 3/5 Recovery				
5.5	SPATER COARSE TOP	"			目
6	SALD Jens				
Ξ	Morst pinker				
6.5	Clay 3.54 4/4		and the same of		H
E	HARDISTIFF PLASTIC MAKES L'TABS				
7 =	Plastic makes 1 1265				E
7.5					
=					
8 =					-
8.5		- 9			
, =					
=					
9.5					13
Ξ					
10					

Client/Installation		Borehole Nun	nber	Page _ 3 _ of _ 4		
Project	MIT MIGH	Inspector Name				
FY17 Phase 3 Regional SI for PFOS/PFOA		Timothy Runkle		Date: 9/76/8018		
Carrier to a		Headspace	Analytical Sample Interval	Notes:		
Depth	Description of Materials	Reading (ppm)	interval		\equiv	
=	10-15 215 Record				\equiv	
10.5					\equiv	
=	10-11'544			3	\exists	
11.0	300					
	11-121 2544/1.					
=	11-121 SAN 21544/4				\equiv	
11.5	c layes Silt				\equiv	
=	with very Enve SIND Most loose	0.0			\exists	
12.0	SMO,	8,0			\exists	
	Moist losse					
12.5	NOT PLASTIC				=	
					=	
13.0				1.2		
-					\exists	
\equiv					\equiv	
13.5					\equiv	
					=	
4.0			or		=	
=			8		=	
14.5			7		\exists	
=			and		\equiv	
\equiv			30			
15.0	to a start					
	15-20 3/5 Records	0,0			\equiv	
15.5	21 5.1415	- 4			\exists	
=	15-20 3/5 Records 15-16 Claye Sitt with Five Sand Most look Norphie	10424	6		\exists	
16.0	Most look that place	7				
	W-1643 BL	-0			\equiv	
16.5	16-16-2 Black WITH	5.9			\equiv	
16.5	Hydro CARBON COROR			2	\equiv	
=	Five Silty SAUD Rounded I to Sub Roads				\exists	
17.0	Rounded 1 to Sub Rrude				\exists	
\equiv	WET				=	
17,5	16.2-23				=	
=	Fire to medium Sand	0.0			\exists	
18.0	Revolded to Sub	0,0			\exists	
=						
\equiv	Rounded Some Pelt				\exists	
18.5						
=	104R5/6				\equiv	
19.0				Line and the		
=					\exists	
19.5 _ =					\exists	

Client/Installatio		Borehole Nur	mber 3SB_/	Page4 of4	
Project	gional SI for PFOS/PFOA	Inspector Name Timothy Runkle		Date: 9/26/2018	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample		
	20-35 415 ' Recome				I
20.5	254 5/7				目
21	Siltyclay			, market 1980	H
21.5	254 5/2	0,0			
					目
22				(2-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	目
22.5			and the same of th		眉
∃ 2	21,5-24				
23	COLRSC FINE SIND		1		
23.5	LOOSE, 104R 5/6				\exists
24	Plashe, SOFT			44	
Ħ	I" TASS				13
24.5	END OF BURING				目
25	AT 24'				目
25.5					
26		1			目
26.5		p			目
=					
27					目
27.5					日
28 =					且
Ħ					
28.5		200			目
29		100			昌
29.5					
E					
30					

Client/Installation ANG/SIOUX CITY	ANGB	Oversight C	ontractor Leidos		Borehole Numbe	3-SB_C	
Project		Driller : Caso	ade		Page		
FY17 Phase 3 Regional SI fo	r PFOS/PFOA	ANG	S/SIOUX CITY	ANGB	Page <u>1</u>	of4	
Sizes and Type of Drilling and Sam	pling Equipment			Seuta Gras	Location Description OF Building En	ll .n	
Date/Time Started:			Date/Time	Finished:			
Overburden Thickness	Depth to G	roundwater (ft		Total Dept	th (ft)		
Sample for PFOS/PFOA Analysis			Sample for	PFOS/PFOA	Analysis		
Sample ID: SIO <u>²²-SB</u> 0	1		Sample I	D: SIO	-SB <u>-3</u> -02		
Sample Interval: 0 to 2 ft			Sample I	nterval:	15 to 17 ft		
Inspector Name			Inspector Si	The second secon			
Timothy	Runkle		~ 2		2		
Monitoring Well ID :	Backfill Typ		,	Date Back			
NA		ton, te		140	6(18		
Latitude 42, 3885 9727	Longitude	75596		Elevation	on (ft) 095,73		
Sketch:	-						
61499		T	Builday	29		GMB	
		Corr	CRETE				
			eD		<u></u>	NOT TO SCAL	
		Gra	55			W N	

Client/Installation ANG/SIOUX CITY ANGB Project FY17 Phase 3 Regional SI for PFOS/PFOA		Borehole Nur	nber <u>▷</u> -SB <u>></u>	Page of4		
				Date: 09/2412012		
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:	Ш	
0.5	-25 ClAy, Stiff					
1 = = = = = = = = = = = = = = = = = = =	-25 Clay, Shift 12.54 3/2 HARE TARS	0,0	587.01			
\equiv	2.54 2.5/1		300,20,01	1/2 1/2		
2.5	BRY RYANG CLAY					
	2.7-5'	A promotor			誾	
3.5	RIST 4/4 STIFF CLAY MAKES 1" TABS					
4 =					目	
4.5					冒	
5 =	2 (1/2)				冒	
5.5	SAA TESA	0,6			冒	
6	5-7 SAA	6,0			冒	
6.5	7-9 Soft Clay				冒	
7 =	7-9 Soft (Ary 8,1147 (1/2 2.54 4/2 MAKES 3" WERRAYS				冒	
7.5				-	冒	
8 =					冒	
8.5					冒	
9 =						
9.5					冒	
10						

	Client/Installation		nber 5883	Page3 of4		
ANG/SIOUX CITY ANGB Project		Inspector Nar		Date:		
	Regional SI for PFOS/PFOA	Timothy Runkle		09/24/2018		
		Headspace	Analytical Sample Interval	Notes:	٦	
Depth	Description of Materials	Reading (ppm)	interval			
=	10-15 4/5 Recom				\exists	
10.5	10-11 SAA				\exists	
=	3/4			1 1.		
11.0	11-115				╕	
=	11-11,5 TUR CLAREY SI Billy Clayer. H WILL FINE SLUD SAME COLOR AS ABOVE	IT			\exists	
11.5	Lety The Control	0,0			\exists	
=	Same Calor AS ABOLE	0,0			\exists	
12.0	WET	C = - +4.3		100	\exists	
=	11.5-14			l lei	\exists	
12.5		OIL			\equiv	
=	VERT SOFT CLAY WITH	2017		- 13	\exists	
13.0	DAMP COLURAS		mil		\exists	
=	ABove				=	
13.5	property and the state of the s				\equiv	
Ξ				L 1:	\exists	
14.0			-,		\exists	
=					=	
14.5	valueties and the second second			10-10-10-10-10-10-10-10-10-10-10-10-10-1	\exists	
\equiv				1 :	=	
15.0	-/-1			_	\exists	
\equiv	15×20 5/51				\exists	
15.5	SAATON		20,		\exists	
\equiv	15-17,5 SAA		25,2		\exists	
16.0			2	the same and the	\exists	
\equiv	1		200	1	\exists	
16.5	17.5 - 28		0)		=	
\equiv	WET AT 191				\exists	
17.0	59 4/1 WITH				=	
=	59 4/1 WITH 104R4/4 Mattle	1		1	\exists	
17.5	- Clay hery soft	0.6				
	Clay very soft physic 3" worns				\equiv	
18.0	print 5 working			and the same of the same of	=	
=	19-20				\exists	
18.5	Sandy Cs. Hy chy				=	
					\exists	
19.0	Five Sonds				\exists	
=	Five Standa				\equiv	
19.5 _ =	2.54 5/4'			Annual Communication of the Co	\exists	
=	MET				\equiv	
20.0	Variable				\exists	

Client/Installati		Borehole Nur	nber 5-SB	Page Page 4 of 4	
Project	egional SI for PFOS/PFOA	Inspector Nar		Date: 09/24/12	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:	
Deptil					
20.5	70-25 Decum				
	POSEY SCIETED COASISE to FINE SAW				
21	Possel Scott ED				
=	Carrel				
1.5	FINE Stad	6.0			
	2.54 5 14	0.0			=
22	201017			and the second second	
2.5					=
23					
3.5					
-					
24				- 100 C	
-					
24.5					
25					
	= = = = 1 751				
5.5	END OF BORING At 25'				
=					
26					
=					13
6.5					
=					
27 =					
=					
27.5					
=					13
28					
=					
28.5					三三
=					
29					
=					
9.5					三
=					
30				HEROTA DUTT	=

Client/Installa		CITY AN	GB	Oversight	Contractor Leidos		Borehole Number	7-SB <u>2</u>	
Project				Driller : Ca	scade		Page		
FY17 Ph	nase 3 Region	nal SI for PFC	S/PFOA -	A	ANG/SIOUX CITY ANGB Page _1 of _4				
Sizes and Type	e of Drilling a		Equipment			Borehole Lo SE CO ARKA	BETWEEN R TMA-WAY	gmes.	
Date/Time Sta		Ø			Date/Time	Finished:	1746		
Overburden T	And the last of th			roundwater	(ft)	Total Depth	(ft) 25		
Sample for PF	OS/PFOA An	alysis			Sample for	PFOS/PFOA A	nalysis		
Sample ID:	: SIO <u>97</u> -S	B <u>2</u> -01		1.11	Sample	D: SIO	SB_Z-02		
Sample Int					Sample	nterval:	19 to 21 ft		
Inspector Nam	ne	nothy Rui	nkle		Inspector S	ignature	un		
Monitoring W	ell ID :		Backfill Typ	e		Date Backfi			
NAI			Bento	nite		9/2	7/18		
Latitude 42.395			Longitude			Elevation (f	9,62		
Sketch:		278) 5	Warrange 235		261	-	
G	AS 5	Conen	. k			1	Ramp		
			1						
	G,	1295	1	*	()		NOT TO SCALE	
				TA	iki wo			W. €	

Client/Install	ation ANG/SIOUX CITY ANGB	Borehole Nur	nber 2-SB_2	Page of4	
Project FY17 Phase 3	Regional SI for PFOS/PFOA	Inspector Name Timothy Runkle		Date: 9/27/18	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample		
Ξ	0-5 - 3/5' Rowing				
0.5	a-r,				一目
ı _=	Silly Clay		or		H
\equiv	Dry compact plastice 2.54 4/4	0.0	138		
1.5		in Company	3107332 01	II. THE	
2	1-2	and the second	2	q	$\vdash \exists$
2.5	Rea Graves				
三					
3 ==					ΗB
3.5					_=
=					
4 =					
4.5				-	日
5					
· =	5-10				
5.5	No Recovere				H
6 =	5-10 No Recovery Geneel clagging				日
Ξ	Cons				13
6.5					TE
7 =					H
7.5					ΙΞ
8 =					
8.5					国
Ξ					
9 =					
0.5 _					日
∃					

Client/Installati		Borehole Nun		Page3 of4 Date: 9/27/18		
ANG/SIOUX CIT	TY ANGB		7-SB <u></u> 2			
Project EV17 Phase 3 Re	egional SI for PFOS/PFOA	Inspector Nan Timoth	ne ny Runkle			
127 Filase 3 No	eBraum at lot 11 col 11 ou		Analytical Sample	Notes:		
Depth	Description of Materials	Reading (ppm)	Interval			
=						
10.5	No REcordery					
-	10-15				=	
\equiv						
11.0					=	
=					13	
1.5						
\equiv						
2.0						
=						
2.5					=	
2.3					=	
=						
3.0						
13.5					-	
=						
4.0					_=	
=						
14,5						
4,5						
=						
15.0					-=	
=	75-20 5/5 Recovery 2.54 5/4				=	
15.5	Recovery,					
	- 15 = 1 V				\exists	
16.0					_ =	
=	Men Fine ter					
16.5	Very 1					
.6.5	Medeum Sond					
	Medium Sond loose, domp					
17.0		0.0				
=						
17.5					$ +$ \equiv	
18.0						
=						
=						
18.5					-	
=			0			
19.0			, oil			
\exists			SON SOLOR		=	
19.5			11		_=	
=		124 - 1	Car.			
20.0			03			

Client/Installation ANG/SIOUX CITY ANGB		Borehole Nur	nber 57-SB 2	Page4 of4		
Project	Regional SI for PFOS/PFOA	Inspector Name Timothy Runkle		Date: 9/27/18		
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:		
\equiv	70-251 5/5 Recovery					
20.5	254 (4)	J 1			$+ \exists$	
\equiv	7,54 6/4 MEDIUM to COARSE SAND LOOSE					
21	S AND LIXE				$+\exists$	
Ξ	WEST AT 231	0,0			13	
21.5	7 71 83	-	,		$+ \equiv$	
					1 =	
22						
E						
22.5						
=						
23 =						
23.5 _ =						
=					=	
24 =					旦	
=						
24.5 _ =					三	
=						
25 =						
=	STOP AT 25'					
25.5					_=	
Ξ					\exists	
26						
\equiv						
26.5					$+\exists$	
Ξ						
27					-	
=					13	
27.5						
=						
28						
Ξ						
28.5		100				
=						
29						
29.5						
30						

Client/Installation ANG/SIOUX CITY A	And the second	Oversight Contractor Leidos	Borehole Numb	WI-SB Z		
Project	ı	Oriller : Cascade	Page			
FY17 Phase 3 Regional SI for P	FOS/PFOA	ANG/SIOUX CITY ANGE	ANG/SIOUX CITY ANGB Page 1 of _			
Sizes and Type of Drilling and Sampl	ing Equipment	S	ehole Location Description ONTH OF BUILD FOFF CONCRETE HMPIN GRASS	6/mccs 5 70		
Date/Time Started: 9/29/2018	1816	Date/Time Finish				
Overburden Thickness	Depth to Grou	9(I Depth (ft)			
Sample for PFOS/PFOA Analysis		Sample for PFOS/				
Sample ID: SIO <u>∅</u> -SB <u>2</u> -01		Sample ID: S	10 <u>0(</u> -SB_Z-02			
Sample Interval: 0 to 2 ft		Sample Inter	/al: <u>5</u> to <u>7</u> ft			
Inspector Name Timothy R	unkle	Inspector Signatur	re			
Monitoring Well ID:	Backfill Type Ben h	in, le Date	Backfilled: 7/29/2018			
Latitude 42,3934477 Notes:	Longitude -4.37	CA145	ation (ft)			
Sketch:		Boile 252	-ly			

Client/Install	ation ANG/SIOUX CITY ANGB	Borehole Nur	mber 0/-SB_2_	Page of4		
Project FY17 Phase 3	Regional SI for PFOS/PFOA	Inspector Name Timothy Runkle		Date: 9/29/18		
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:		
=	6-5 2+ JA 251/5 Recov				TE	
0.5	7,51/5 Recol	×			= 0	
Ξ	0-05					
1	BILL SH CLAN TO	n	-		13	
1.5	STIFF Sitty Clay To. Clayay Sitt France Delange					
=	Frakle Helang					
2 =	10 TH DY op				2	
=	6,5-1,5	0.0				
2.5	DAMP FINE to		-		2	
₃ =	DAMP Find to Course well sonies EARDS 2,545/3					
, <u> </u>	2,545/3					
3.5					3	
=	1,5-2,5				13	
4 ==	3,1ty of lay				4	
4.5	Silty fly Shift Blastic damp 544/1					
=	54 4/1					
5 _=		-			5	
	5-10 4151			-	ΙΞ	
5.5					= 5	
, =	5-81				=	
° =	2.54 4/2				=	
6.5	Clay plastic				6	
=	Shiff Home Clay plastic Mars 3" wo zurs				IΞ	
7 =	. 01		-			
7.5	8-9					
- E	COOSE /SOFT CLY CLOOSE /SOFT CLY CLAMP PLASTIC MARS 14 FASS					
8 ==	anop plastic				- 38	
Ξ	make in track				\exists	
8.5					= 8	
, =					_=_9	
9.5					9	
=						
10					11	

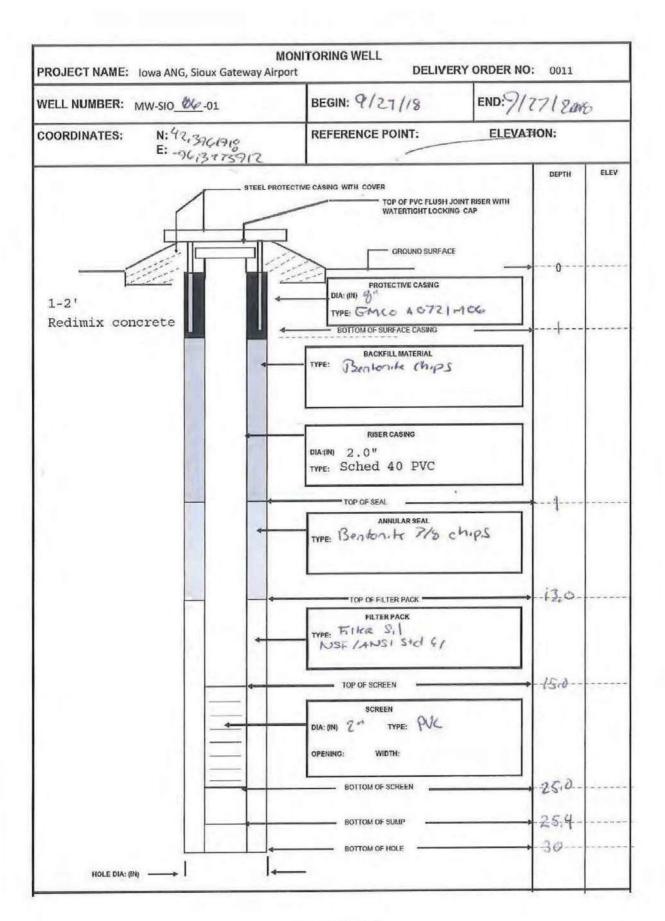
Client/Installation ANG/SIOUX CITY ANGB			Page Page 3 of 4		
Regional SI for PFOS/PFOA					
Description of Materials	Reading (ppm)	Interval	Notes:		\perp
10-15 5/5					
2 1 211 14					H
10-4 SANDLY STI WITH	1				13
Clay plastic	8,0				日
LIET SMIE					$\parallel \equiv$
11-15 Colee 18/4	No. 1 OFF				
-					
Fine to comple					
SAND well Reartel					旦
00/9,14					
SATURATION					$\vdash \exists$
			7		=
					1 =
	-				
					=
15-70 5/5	0,				
	M MAY PROPERTY OF				- E
15-16.5 S					
= 31 also	0.00				$-\equiv$
Silly city	0.0				
2.59 514	010				
WET PLASHE SOFT					
1. ~					E
16,5 - 20					=
SATURATES					
Sandy Chy 54/3/1					
Plastico					
		×.	12.8		一三
		3.1			
					H
					\exists
	Regional SI for PFOS/PFOA Description of Materials 10-15 3/5 10-15 3/5 10-15 3/5 10-15 SHI With CLAY PLASTIC WET SMILE COLOR DATE 11-15 FINE to COMPSE SANDO WELL RENTED 15-20 5/5! 15-16.5 S 51/4 CLAY 2.54 56/4 Soft WET PLASTIC SOFT	Regional SI for PFOS/PFOA Regional SI for PFOS/PFOA Description of Materials 10-15 SANOGY SHI WITH CLAIM PHYSIC WET SMARE COLOR BAR 11-15 FINE to COMBSE SANOW WEIL RESTAULT WE SANOW WEIL RESTAUT 15-20 S/5/ 15-16.5 SITHY CLAY 2.54 51/4 Soft NET PLASHIE Soft	Regional SI for PFOS/PFOA Regional SI for PFOS/PFOA Description of Materials 10-15 S-15 10-4 Sandy S+1 with Clay plothe Clay plothe Colore DA 11-15 Fire to coarest Sando well result as /9, 14 Saturation Saturation 15-20 5/5' 15-16.5 S Silfy clay 2.54 5/4 y soft 16.5 - 20' Saturated Sandy Chy 54/3/1 plastic of 54/3/1 plastic of 54/3/1	Regional SI for PFOS/PFOA Regional SI for PFOS/PFOA Description of Materials Description of M	Regional SI for PFOS/PFOA Regional SI for PFOS/PFOA Description of Materials Description of Materials 10-15 3/5 To y Sandy SH with Clark playfac wolf in the roal Clark playfac wolf in the correst Sando will rearred wolf it is not correst to sando wolf it is not correst to sando wolf it is not correst to sando wolf it is not correct to s

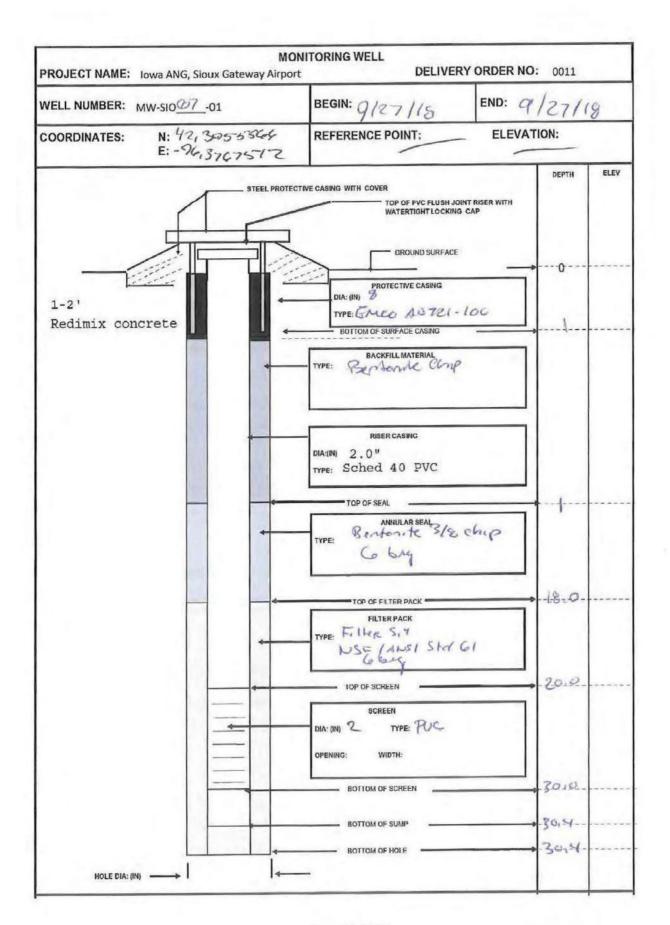
Client/Installat		Borehole Nur	mber ol-SB 2	Page4 of4	
Project	egional SI for PFOS/PFOA	Inspector Na		Date: 9/29/2018	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample	Notes:	
	20-25 STIFF DAMP Plastic Clay names 4" works 54 4/1				
20.5	STIFF DAMP	-			H
\equiv	Plastic Clay				
21	nakes 4" workers	-			13
=	54 4/1				
21.5	2.111	Carried St		hall be not a second or a seco	
=					
22 —		1 - 4			日
=					
22.5					1=
23					日
=					
23.5					一目
=					$ \exists$
24					一目
=					
24.5			-		
\equiv					
25			M		
=					
25.5					
3					
26					
=					
26.5					
. =					Ξ
27					
Ξ					=
27.5					
=					=
28					
=					
28.5					
, =					
29 =					
29.5					
9.5					
30		1			

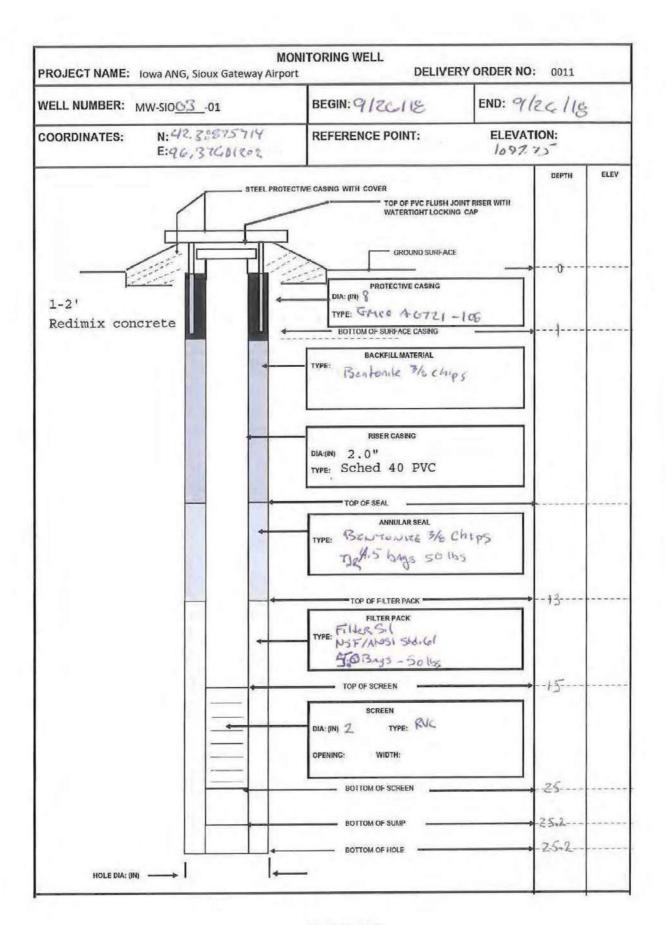
Client/Installation ANG/SIOUX C	ITY ANGB	Oversight Contra	ctor eidos	Borehole	Number SIO <u>&H</u> -S	B <u>3</u>
Project		Driller : Cascade		Page		The set
FY17 Phase 3 Regional		ANG/SIO	UX CITY ANGB	Pa	age <u>1</u> o	f_4_
Sizes and Type of Drilling and			NE	Location Desc MSS & SIDE &	ription	e em
Date/Time Started: 9/29/1856	TIL	Date 9	e/Time Finished : /29/18			
Overburden Thickness V A	Depth to G	roundwater (ft)	Total Dep 2	5		
Sample for PFOS/PFOA Analys			ple for PFOS/PFOA			
Sample ID: SIO SB	3-01		nple ID: SIO			
Sample Interval: 0 to	2 ft	Sar	nple Interval:	to t	<u>Z</u> ft	
Inspector Name Timo	thy Runkle	Insp	ector Signature	·-		
Monitoring Well ID:	Backfill Typ	nite Chip	Date Back	filled : 9 7018	,	
Latitude	Longitude		Elevation	(ft)		
42,3976345	-96.	3706997				
Sketch:	19	mess 1	Buildy			
			,			
				P	gn	NOT TO SCALE
			-/			"ज्ञ

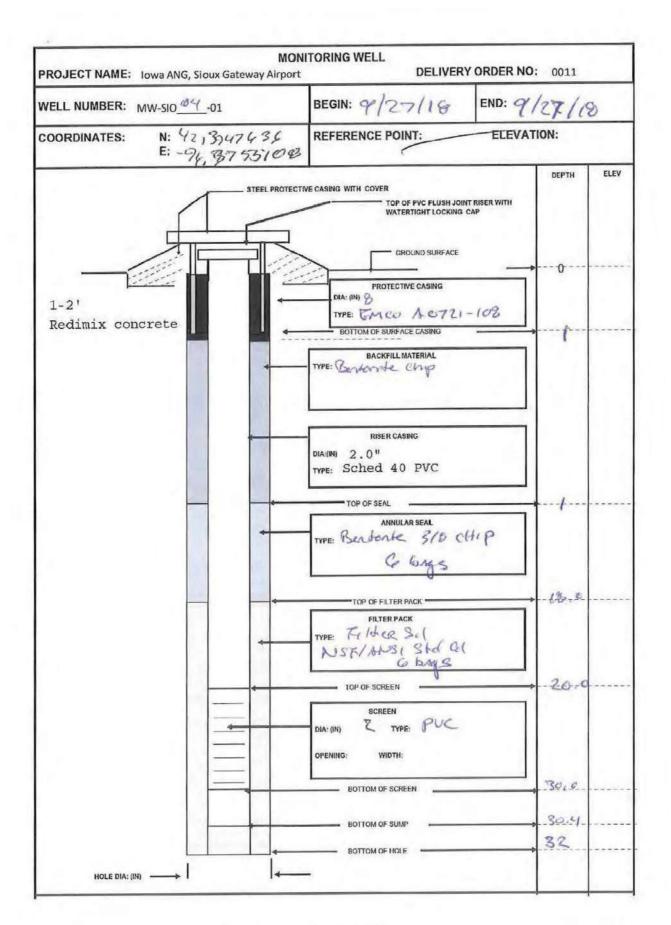
Client/Installat	tion ANG/SIOUX CITY ANGB	Borehole Nur	nber <u>4</u> -SB <u>3</u>	Page of4	
Project FY17 Phase 3 R	tegional SI for PFOS/PFOA		ny Dunklo	Date: 9/29/18	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes: 9/29/18	
0.5	0-5 3/5 Recovery				0.5
1.5	HARD dry clay runes 1" TABSS SEN' PUSHIC	0.6			1.5
2.5	2'-3'				2 2.5
3 3.5	SILTY CLAY MOIST SENN' PLASTIC MALES I"TABS		ur		3 3 3 5 5
4.5					4.5
5.5	5-10 3/5 Recover				5.5
6.5	5-10 3/5 Record Silty clay champ soft sof BR makes 2" worms	0,0			6.5
7.5					7.5
8.5					8.5
9.5					9.5

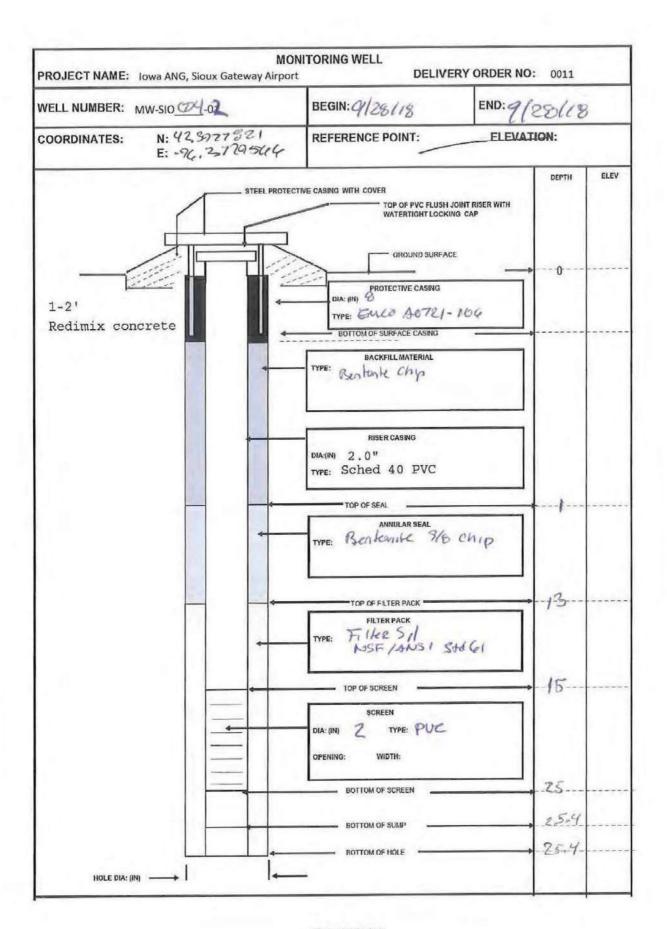
Client/Installa ANG/SIOUX C		Borehole Number SIODH-SB 3	Page _ 3 _ of _ 4	
Project FY17 Phase 3 I	Regional SI for PFOS/PFOA	Inspector Name Timothy Runkle Headspace Analytical Sample	Date: 9/29/19	
Depth	Description of Materials	Reading (ppm) Interval	a Notes:	
=	5/5 Reco		=	=
10.5	3/3/4200	T	=	1
	SATUR TSA			=
11.0			=	Ξ 1
=	10-11	41.	=	
11.5	Silly clay 2,54 Seni-biashe	47	1	3 1
	Seni-plashe		=	=
12.0	2011	the fall of	E	3
	SAWRATED		=	
12.5	11-12		=	Ξ,
	2 1 Januath Sitt			
13.0	Sandy clay with Silt sentiplastic	254 4/4	=	Ξ,
	Senti plastic			
13.5	Soft, very fine Small			3
	SATURBIED			=
14.0	12-15		=	3
		- 11/11	=	=
14.5	Silty Clay	2.54 4/4	=	3
	Soft to Stiff		=	=
15.0	WET			3
			=	
15.5	15-201 4/5 Reco	chul	=	3
		,	=	=
16.0	15-17		<u>_</u> =	3
	SATURATED			=
16.5	S. 14 Clay		=	3
=	Plastic Paraket 2"comen Stiff		1 18	Ξ
17.0	Stiff	6.0	=	3
	2.54 4/2		1 1 5	
17.5	217.112		-	3
=	17-14		1 1 5	\exists
18.0				3
=	DAMP CHY		1 15	Ξ
18.5	DAMP Clay 54/4/4 Makes 5" worms		=	3
\equiv	MAKER -1/ worms		=	
19.0	In tal.		=	3
	r 1/4-22		=	3
19.5			=	3
			=	
20.0				٦,

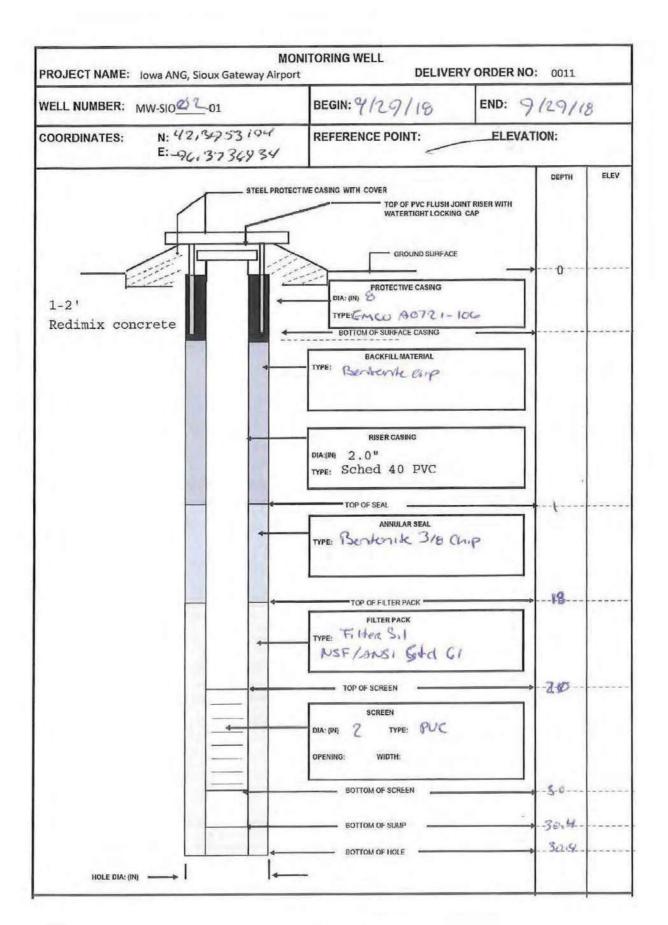

Client/Installation		Borehole Nun	hber 4-SB_3	Page of4 of4	
Project	gional SI for PFOS/PFOA	Inspector Nar		Date: 9/29/18	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval		
Depth 2	20-25 3,5/5 REGOV	- Redding (ppin)			13
20.5	Proper	en		a formulation	
=	166000	-)			
21 =	CAA			A STATE OF THE STA	=
=	MAC				
21.5		0,0		Y	三
					1 =
22					日
=					=
22.5				P	
23					=
=					\equiv
23.5					=
					\equiv
24		1100			=
					=
24.5					=
					=
25		_			=
				7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
25.5					
26					
26.5		a Hillard			
27		4			
27.5					
=					
28					
=					
28.5					
=		-2			
29		- 7			
\equiv					
29.5					
30			-	Jan San State of the State of t	

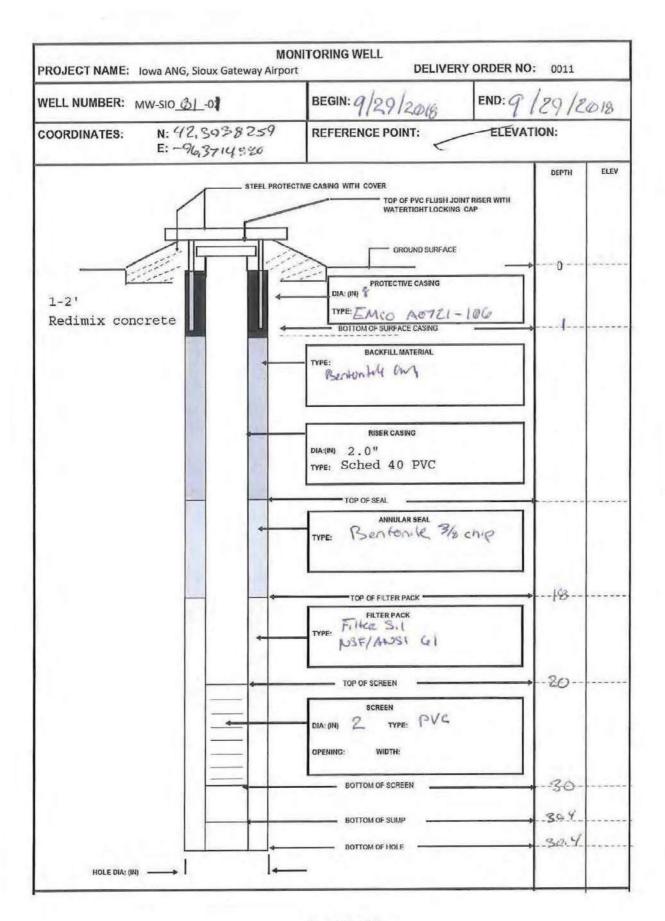

Client/Installation ANG/SIOUX C	TY ANGB	Oversight Contrac	tor eidos	Borehole Number SIO@2-SB_7
Project		Driller : Cascade		Page
FY17 Phase 3 Regional S	of for PFOS/PFOA	ANG/SIOU	JX CITY ANGB	Page <u>1</u> of <u>4</u>
Sizes and Type of Drilling and	Sampling Equipment		Borehole IN 6 Bull	Location Description MSE IN PROVE UT ILY 253 AND THE
Date/Time Started:	925	Date	/Time Finished : 9 / 2 9 / 1	8 1955
Overburden Thickness NA	Depth to (Groundwater (ft)	Total Dep	25
Sample for PFOS/PFOA Analys	ls		ole for PFOS/PFOA	
Sample ID: SIOZ-SB	01		ple ID: SIO	
Sample Interval: 0 to 2	2 ft	San	ple Interval:	19 to 18 ft
Inspector Name		Inspe	ector Signature	w
Timot	thy Runkle	1.0	20	
Monitoring Well ID :	Backfill Ty		Date Back	
NA	Ber	Honde Chip	9/2	9/2015
42.394-A63	Longitude	3777791	Elevation	(ft)
Sketch:	B	oildre :	261	
				Boiley 253
		/	0	233
R	MP			Mass NOT TO SCAL
1427				" W N N N N N N N N N N N N N N N N N N


Client/Install	ation ANG/SIOUX CITY ANGB	Borehole Nur SIO	nber Z-SB_Z	Page 2 of 4_
Project FY17 Phase 3	Regional SI for PFOS/PFOA	Inspector Nar Timot	ne ny Runkle	Date: 9(29/12
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	
Ξ	025 315			
0.5	0-1 2,543/2			
1 _=	SMALL SEAL PLASTER SMALL 2" SAND AME COMEST LOVERTONE SUBJOURNELL AT 1"	_		
1.5	Age comes to within			1.5
2 =				
2.5	Clay still day	60		2.5
3 =	2,59 4/3 propes 3"tabs			
3.5		i.,		3.5
4 ==		_		
4.5		-		4.5
5 =				= = s
5.5	5-101 4/5 Recovery			5.5
6 <u>=</u>	5-8'			= = = = = = = = = =
6.5	SAA			6.5
, _=	9'-9'	00		
7.5	chyer Sett : book droup Not plastic 2.54 413			7.5
8	Not plastic			8
8.5 <u> </u>	2.54 413			8.5
9 _=				<u> </u>
9,5				9.5
=				


Client/Installation		Borehole Nur SIO	nber SB	Page Page 3 of	_4
Project	gional SI for PFOS/PFOA		ne hy Runkle	Date 7/29/18	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:	
$\equiv c$	0-15 415 Recovery				13
10.5					TE
11.0					
目	Silty Clay loose				
11.5	,			47	=
12.0	2,544/3 SAL CLAY TOR				= =
= K	EM Clay TOR			,	
12.5	Soft Chil	0,0		2	
13.0	C 16 clay soft			N.	=
目	and the contract of the contra	,è			
13.5	Plastic damp some darkbann mother 3%			-1-	
14.0	some data sin	in the second			=
=				g and	13
14.5				¥14-	
15.0					- E
	5-20 4,5/5 Recove	1			13
15.5	Fine to COARSY Substituted SHUD			4	
16.0	2541654				===
=	DAMP	20		4.0	
16.5		U.			
17.0					
\equiv					
17.5					
18.0				*	
\equiv					
18.5					
19.0					=
\equiv			<u> </u>		
19.5					
20.0					=


Client/Installa		Borehole Nur SIO	mber 22SB 2	Page of4	
Project	A CANADA	Inspector Na		Lagran	
	Regional SI for PFOS/PFOA		hy Runkle	Date: 9/29/18	
Depth	Description of Materials	Headspace Reading (ppm)	Analytical Sample Interval	Notes:	
	20-25 4/5 Becoming				
20.5					
20.5	SATURATED				
\equiv	The state of the Sub				
21	C. I. CAND				
\equiv	SATURATED MED-CORRSE SUB AUGULAR TO SUD Resided SAND 25485/4	0.0			
21.5	23 41 319	-			
=					
22					
=			:		ΙΞ
22.5			19-4-1	programme and the second	
=					
23					+=
=					
23.5					$+ \equiv$
=				Y .	
24	A STATE OF THE STA			Total English	$+ \equiv$
=					
24.5		10.0			=
=					\exists
25 =				ter en el-el	-
=					IE
25.5					_=
=					
26					
26.5					
27					
=					
27.5					
20					=
28					
					\equiv
28.5					_
=					\equiv
29				17	=
=					=
29.5					=
\equiv					=
30 —					





APPENDIX B GROUNDWATER SAMPLING LOGS

THIS PAGE INTENTIONALLY LEFT BLANK.

DATE: 16710/18	TIME: 1130
WELL ID NUMBER: MW-SIO 3 -01	
DEPTH OF SCREENED INTERVAL (toc notch):	
INNER CASING: TYPE: PVC	ID: 2 Inches 14 inches
WATER QUALITY METER ID: YS	
WATER LEVEL INDICATOR ID: Solmot	
PUMPID: Sample Pro	
TURBIDITY ID: Hanna	
PIDID: MINI RAE	
DEPTH TO WATER: 20,15	FT FROM MEASURE POINT
DEPTH TO TOP OF SCREEN: 15	FT FROM MEASURE POINT
DEPTH TO PUMP INTAKE: 23.5	FT FROM MEASURE POINT
PURGE/SAMPLE METHOD: [] Monsoon [Peristaltic Pump [/] Other Pump Type
PURGE START TIME: 1/45	PURGE END TIME: 1774
TOTAL VOLUME PURGED: 144	(mt)
S&A PLAN SAMPLING PROCEDURE FOLLOWED:	[/] Yes [] No IF NO, WHY WAS A DEVIATION NECESSARY:
RECORDED BY: 7 1111	QA CHECKED BY:
(Signature)	(Signature)

Page 142 of 183

								WELL ID:	MW-SIO2	501
ROJECT	NAME: IO	wa ANG, S	ioux Gate	way Airpor	t			DELIVERY	ORDER 0011	
Date: /⊘//ÿ TIME	Volume Purged (mL)	PURGE RATE (mL/min)	ORP (mv)	TEMP (°C)	pH (S.U.)	SpecCond (μS/cm)	DO (mg/L)	TURBIDITY (NTU)	DEPTH TO WATER (FT BTOC)	COMMENTS
154	2	400	45,1	17.72	8.50	1353	2.19	321	20.15	
1155	4	440	24,6	13.16	3.34	1366	0,99	151	20,14	
200	6	युट्य	19,7	13,16	5.52	1370	1,04	116	20,14	
1205	G	400	17.7	13.08	0.21	1370	0.94	841	20.14	
210	16	460	8,9	13,12	8.70	1371	0.93	4011	20,14	
1215	12	400	612	13,12	2.16	1374	0,90	27.9	20.14	
1220	14	460	6,3	13,17	210	1374	6.93	24.5	20,14	
					n					
			٥	172	0[16/3	2010				
				1						

RDED BY:	In Other	QA CHECKED BY:		
	(Signature)		(Signature)	

SAMPLE COLLECTION-NEW WELL

DATE: 144		11	TIME: 7 3	20		
SAMPLE ID NUI		MW-SIO@3-01-01	FIELD	READING	UNITS	H&5 (Y/N
SAMPLE LOCAT		MW-SIO25-01	Conductivity	1314	μS/cm	V
SAMPLE DEPTH		22,5	DO	0,93	mg/L	V
SAMPLING POI	NT:	тос	ORP	6.3	mV	N
SAMPLE MEDIA	٨:	GW	Temperature	13.17	°C	N
		6 1		240	NTUs	N
SAMPLE TYPE		Grab	Turbidity	24,5	MIOS	1
SAMPLE TYPE		Grab	pH	8.10	S.U.	N
SAMPLE TYPE			pH PID		ASSAULTE HAVE	
COMMENTS: CONTAINERS & VOLUME	Colle		рН	8.(0	S,U. ppm	

NATE: 10 /10 1 20016	
DATE: 10/10/2018	TIME: DEIC
WELL ID NUMBER: MW-SIO 22-01	
DEPTH OF SCREENED INTERVAL (toc notch):	20 ft. to 30 ft.
NNER CASING: TYPE: (PVC)	ID: 2 inches / 4 inches
WATER QUALITY METER ID: YS 1	
WATER LEVEL INDICATOR ID: Selinst	
PUMPID: Shuple Pre	- Gr
TURBIDITY ID: HANNA	- CPM2#
PIDID: MINI-ILAE	1-31 = 50
DEPTH TO WATER: 19,73	FT FROM MEASURE POINT
DEPTH TO TOP OF SCREEN: 20	FT FROM MEASURE POINT
DEPTH TO PUMP INTAKE: 30 25	FT FROM MEASURE POINT
PURGE/SAMPLE METHOD: [] Monsoon [Peristaltic Pump Dinosca
PURGE START TIME: OSS &	PURGE END TIME: 0926
TOTAL VOLUME PURGED: 20 C	Lents
S&A PLAN SAMPLING PROCEDURE FOLLOWED:	[Yes [] No IF NO, WHY WAS A DEVIATION NECESSARY:
RECORDED BY: Tinya Cole	QA CHECKED BY:

A	p	pend	xil	E -	Hazardous	Material	S
---	---	------	-----	-----	-----------	----------	---

THIS PAGE INTENTIONALLY LEFT BLANK

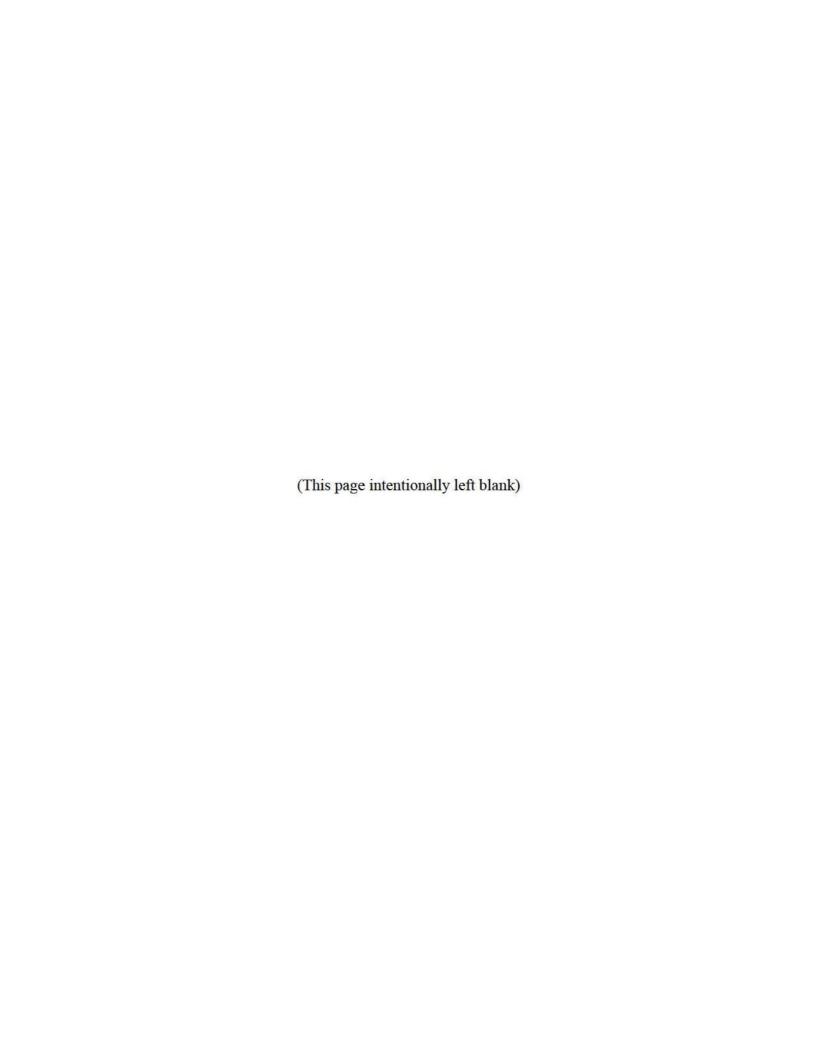
Appendix E - Hazardous Materials	
	Appendix E.3
	Preliminary Site Inspection Report

A	p	ре	ndi	x E	_	Hazar	dous	Mate	rials
---	---	----	-----	-----	---	-------	------	------	-------

THIS PAGE INTENTIONALLY LEFT BLANK

FINAL

PERFLUORINATED COMPOUNDS PRELIMINARY ASSESSMENT SITE VISIT REPORT


IOWA AIR NATIONAL GUARD 185TH AIR REFUELING WING SIOUX CITY, IOWA

Prepared For:

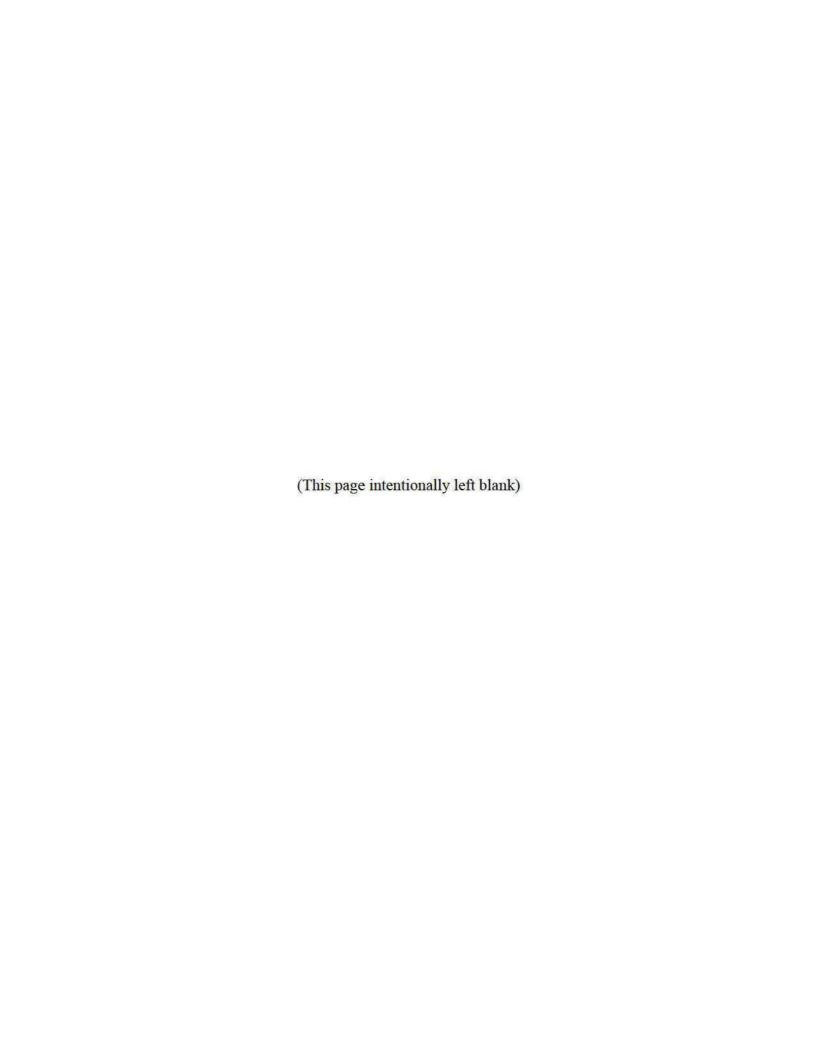
Headquarters Air National Guard Joint Base Andrews, Maryland

February 2016

FINAL

PERFLUORINATED COMPOUNDS PRELIMINARY ASSESSMENT SITE VISIT REPORT

IOWA AIR NATIONAL GUARD 185TH AIR REFUELING WING SIOUX CITY, IOWA



Prepared For:

Headquarters Air National Guard Joint Base Andrews, Maryland

Prepared By:

BB&E, Inc. February 2016

TABLE OF CONTENTS

1.0 INTRO	DUCTION	1
1.1 Hydro	geologic Setting.	2
2.0 FIRE T	RAINING AREAS	5
3.0 NON-FI	RE TRAINING AREAS	7
3.1 AC	OC Description, Operational History, and Waste Characteristics	7
3.1.1	Aerospace Ground Equipment (AGE) (Building 252)	7
3.1.2	Main Hangar (Building 261)	7
3.1.3	ANG Paint Facility (Building 241)	
3.1.4	Apron	8
3.1.5	Fire Station (Building 286)	
3.1.6	Security Forces (Building 284)	
3.1.7	Nozzle Testing Location	9
3.1.8	Stormwater Sewer System Outfall 1	
3.1.9	Stormwater Sewer System Outfall 2	9
3.1.10	Hazmart Pharmacy (Building 281)	
3.1.11	Supply Warehouse (Building 280)	9
3.2 Pat	hway and Environmental Hazard Assessment	10
3.2.1	Groundwater	10
3.2.2	Soil	11
3.2.3	Sediment	11
3.2.4	Surface Water	
4.0 FINDIN	GS AND CONCLUSIONS	
5.0 REFER	ENCES	17

LIST OF TABLES

Table 1 Preliminary Assessment Report Summary and Recommendations

LIST OF FIGURES

Figure 1 Site Location Map

Figure 2 Site Features and Potential AOCs

LIST OF APPENDICES

Appendix A Photo Documentation
Appendix B Records of Communication
Appendix C Supporting Documentation

- C-1 Notice of Discharge Documentation
- C-2 Stormwater Sewer System Map
- C-3 EDR One-Mile Radius Water Wells Map

LIST OF ACRONYMS

185th ARW

AFFF

AGE

AGE

ANGB

AFF

AIr Refueling Wing

Aqueous Film Forming Foam

Aerospace Ground Equipment

Air National Guard Base

AOC Area of Concern BB&E BB&E, Inc.

bgs below ground surface
FTA Fire Training Area
HEF high expansion foam

IRP Installation Restoration Program

OWS oil water separator
PA Preliminary Assessment
PFCs Perfluorinated Compounds
PFOA perfluorooctanoic acid
PFOS perfluorooctane sulfonate

PHAL Provisional Health Advisory Levels

SI Site Investigation

USEPA United States Environmental Protection Agency

USGS United States Geological Survey

1.0 INTRODUCTION

A preliminary assessment (PA) site visit was conducted by BB&E, Inc. (BB&E) on 3 November 2015 at the 185th Air Refueling Wing (185th ARW) located at Sioux Gateway Airport/Colonel Bud Day Field in Sioux City, Iowa. The site location is shown on Figure 1. The purpose of the trip was to identify potential sites of historic environmental releases of perfluorinated compounds (PFCs), specifically from Aqueous Film Forming Foam (AFFF) usage and storage, as shown on Figure 2. Prior to the site visit, BB&E conducted research of any documented Fire Training Areas (FTAs) in operation since 1970, or any other use or release of AFFF in accordance with the Final PFC Preliminary Assessment Work Plan (BB&E, 2015). During the site visit, BB&E conducted personnel interviews, reviewed on-site documentation and toured each potential site.

Individuals contributing to this PA effort included the following:

- Lieutenant Colonel Neil Stockfleth 185th ARW Environmental Manager
- Chief Master Sergeant Mike Albrecht 185th ARW Fire Chief
- Mr. Mark Kock Fire Prevention Program, Inspection and Maintenance
- Mr. David Miller Paint Facility Manager
- Mr. Mike Dietrich Real Property Manager
- Lieutenant Colonel Gary Prescott Base Engineer
- Major Kris Aldrich Base Engineer
- Captain Adam Mcintyre Deputy Base Engineer

Representative photos of the subject sites taken during the site visit are attached as Appendix A.

Sections 2.0 and 3.0 of this report outline the potential PFC sources identified on the 185th ARW property during the records review and site visit, while Section 4.0 provides conclusions and recommendations for potential follow-on actions. References are included in Section 5.0 and supporting documentation in the Appendices.

1.1 Hydrogeologic Setting

The following information was obtained from the Final Work Plan for the Regional Compliance Restoration Program Preliminary Assessment/Site Investigation dated September 2015 (URS 2015). The Sioux City Air National Guard Base (ANGB) is situated within the Missouri Alluvial Plain Physiographic Province. The alluvial sediments extend an average of 110 feet beneath the surface and consist of unconsolidated clay, silt, sand, and gravel. The underlying bedrock consists of Cretaceous sedimentary rocks that dip toward the northwest at approximately 4 feet per mile. The uppermost bedrock unit is Carlile Shale, a thinly laminated, calcareous marine shale with a minimum thickness in Iowa of approximately 80 feet. The shale formation is underlain by approximately 30 feet of Greenhorn Limestone, a fossiliferous, chalky, shale limestone. The Greenhorn Formation is underlain by the Dakota, which consists of an upper layer of interbedded shale, siltstone and sandstone, and a lower layer of sandstone. Paleozoic limestones, dolomites, shales, and sandstones underlie the Cretaceous formations described above. These formations slope toward the south-southeast at approximately 18 feet per mile, and they occur under the airport at approximately 737 feet below ground surface (bgs).

The airport is located approximately 2 miles east of the Missouri River, which flows south along the western border of Iowa. The Big Sioux and Floyd Rivers join the Missouri River in the downtown area of Sioux City, upstream of Sioux City ANGB. The Missouri River and most of its natural surface water drainage tributaries within the floodplain have been channeled and straightened. Drainage ditches along most of the roads in the area collect highway and crop land runoff for eventual discharge to the larger, channeled tributaries.

The shallow aquifer associated with the Missouri River Valley is unconfined, comprised of unconsolidated gravels, sands, silts, and clays. Variations in lithology may affect the formation of localized areas with confined or semi-confined conditions. Groundwater in the aquifer occurs from just below the ground surface in topographically low areas to approximately 20 feet bgs at higher elevations. The groundwater gradient is directed toward the Missouri River or its tributaries. The Dakota Aquifer, comprised of the sandstones of the Dakota Formation, is confined by the shales within the Dakota Formation and other Cretaceous shales and limestones.

The aquifer is approximately 75 feet thick beneath the airport, occurring at about 190 feet bgs, and extends across most of northwestern Iowa. Groundwater within the aquifer flows toward the southwest, along a hydraulic gradient of approximately 5 feet per mile.

The Ordovician-Cambrian Aquifer exists beneath the Dakota Formation and is confined by overlying shales. This aquifer extends over the western area of Iowa. Additional localized aquifers may occur within the Paleozoic formations beneath the Ordovician-Cambrian Aquifer.

Surface water information is included in Section 3.2.4.

(This page intentionally left blank)

2.0 FIRE TRAINING AREAS

Based on this PA investigation, there is no evidence that a FTA is, or was located, within the current footprint of the 185th ARW site boundary. Two historic FTAs were noted by facility personnel; however they are not located within the current boundary. A map of these FTAs was provided by facility personnel and has been included in Appendix B.

(This page intentionally left blank)

3.0 NON-FIRE TRAINING AREAS

Non-FTA Areas of Concern (AOCs) are sites where AFFF has been released and may include crash sites, hangars, fuel spill areas, hazardous waste storage facilities, firefighting equipment testing areas, etc. The following section includes a description of any non-fire training AOCs, operational history, waste characteristics, and pathway evaluations.

3.1 AOC Description, Operational History, and Waste Characteristics

The following are the Non-FTA AOCs that were identified during this PA Investigation.

3.1.1 Aerospace Ground Equipment (AGE) (Building 252)

The Aerospace Ground Equipment (AGE) (Building 252), was formerly the Fuel Cell Repair Hangar. The building was constructed 1979, and previously utilized an AFFF suppression system. The system was removed when the mission was changed in 2004. Facility personnel recalled two inadvertent system releases, although had no recollection of when they occurred. The system was tested on average annually by releasing approximately 30 gallons of foam. The foam would slowly drain into the building's trench drain which discharges to the sanitary sewer via an oil water separator (OWS). Facility personnel believed that excess foam would likely have been pushed out of the building to the apron southwest of the building and allowed to dissipate.

3.1.2 Main Hangar (Building 261)

The Main Hangar (Building 261) was constructed in approximately 1957. The hangar was previously equipped with an AFFF fire suppression system, however it was converted to a High Expansion Foam (HEF) system in 2003. Facility personnel recalled two inadvertent releases of AFFF that partially filled the building with foam. One release occurred in the mid-1980s and one occurred in approximately 2000. The system was tested on average biannually by releasing approximately 30 gallons of foam. The foam would slowly drain into the building's trench drain which discharges to the sanitary sewer via an OWS. Facility personnel believed that excess foam was pushed out of the building onto the apron southwest of the building and allowed to dissipate.

3.1.3 ANG Paint Facility (Building 241)

The ANG Paint Facility (Building 241) was constructed in approximately 1953. The hangar is equipped with an AFFF fire suppression system. The system was tested on average annually by releasing approximately 30 gallons of foam. The foam would slowly drain into the building's trench drain which discharges to the sanitary sewer via an OWS. Facility personnel believed that excess foam was pushed out of the building onto the apron north of the building and allowed to dissipate.

3.1.4 Apron

The concrete apron is the parking area for aircraft. For the most part, stormwater on the apron would flow in a southern direction and enter the stormwater conveyance system. The stormwater discharges to Stormwater Sewer System Outfall 1 (See Section 3.1.8). No known releases of AFFF were reported by 185th ARW personnel, however due to the nature of the use of the apron for aircraft operations, there is the potential that AFFF was used in the area.

3.1.5 Fire Station (Building 286)

The Fire Station, Building 286, was constructed in 2006. Vehicles containing AFFF are stored in the engine bay of the Fire Station where they are also refilled with AFFF using an AFFF fill system. The overhead AFFF fill system includes an elevated storage 1000-gallon, single walled tank with no secondary containment. In 2012, a leak of approximately 50 gallons of AFFF discharged to the sanitary sewer via the trench drain. The release report has been included in Appendix C-1. Following the release, each of the trench drains has been fitted with a plug. Other than the 2012 release, facility personnel only noted small drips. Typically vehicle washing occurs inside the Fire Station, however occasionally vehicle washing occurs on concrete southwest of the overhead doors.

3.1.6 Security Forces (Building 284)

The Security Forces Building was the former Fire Station until 2006. The building was constructed in 1989 and was owned by Sioux City until approximately 2003, when it was transferred to the ANG. Vehicles containing AFFF were stored and refilled inside the building. Trench drains were located inside the building in the apparatus bays and removed when it was

remodeled. According to Fire Station personnel, minor releases of AFFF likely occurred during filling of equipment.

3.1.7 Nozzle Testing Location

The fire department conducted nozzle testing at the paved area southwest of Building 286 and southwest of the overhead doors at Building 284. Foam was allowed to dissipate. Typically 3-4 gallons of AFFF per vehicle were discharged once per month.

3.1.8 Stormwater Sewer System Outfall 1

According to the 185th ARW Industrial Storm Water Management Guidance Manual, the 185th ARW property is comprised of eleven drainage areas. Drainage areas 1-10 discharge at several locations along the main storm sewer whose eventual outlet is located at Stormwater Sewer System Outfall 1, which discharges to a ditch along Harbor Drive.

3.1.9 Stormwater Sewer System Outfall 2

According to the 185th ARW Industrial Storm Water Management Guidance Manual, the 185th ARW property is comprised of eleven drainage areas. Drainage area 11, which encompasses the ANG Paint Facility, discharges to a single outlet (Stormwater Sewer System Outfall 2), which then discharges to a ditch along Perimeter Road.

3.1.10 Hazmart Pharmacy (Building 281)

55-gallon containers of AFFF are stored in this building on secondary containment pallets. No known releases have occurred at this location.

3.1.11 Supply Warehouse (Building 280)

The installation receives shipments of AFFF at this building. Storage is short term (less than 48 hours), then the containers are transferred to the Hazmart Pharmacy or the Fire Station. AFFF is typically stored on secondary containment, no known releases of AFFF have occurred here.

3.2 Pathway and Environmental Hazard Assessment

The following is a preliminary evaluation of the threats and targets associated with each exposure pathway.

3.2.1 Groundwater

No documentation was available showing that groundwater at the 185th ARW has been tested for PFCs; therefore it is unknown whether PFCs are present in the groundwater. Based on historical practices, PFCs may be present in the groundwater in the areas of the AGE (Building 252), the Main Hangar (Building 261), ANG Paint Facility (Building 241), the Apron, the Fire Station (Building 286), the Security Forces (Building 284), the Nozzle Testing Location, Stormwater Sewer Outfall 1, and Stormwater Sewer Outfall 2.

3.2.1.1 Water Wells

A review of the EDR Radius Map™ Report with Geocheck® dated October 9, 2015 shows 189 wells within a one-mile radius of the 185th ARW as listed in the Federal Reporting Data System database, United States Geological Survey (USGS) database, and the Iowa Well Registration Database (EDR, 2015). Three wells are listed as USGS wells. No public water supply system was found within a one mile radius of the 185th ARW. The EDR Radius Map™ Report has been included as Appendix C-3.

The following was obtained from the Final Record of Decision IRP Sites 1 through 5 dated January 2013 (NGB/A7OR 2013). There are currently no drinking water supply wells at the Base and the shallow groundwater system in the area of the Base is not used as a drinking water source. The nearest municipal water supply wells are located approximately one mile east of the Base, serving the City of Sergeant Bluff, Iowa. Sioux City obtains its potable water from groundwater wells drawing on the alluvial aquifer and the Dakota aquifer. These wells are located 1.5 miles west of the Base and eight miles north of the Base. Several farms south of the Base obtain water from wells installed in the alluvial aquifer. Per information provided at a meeting of the Sioux City Source Water Protection Team on 3 December 2015, the city has long-term plans to expand the collector well field in the alluvial aquifer 1.5 miles west of the Base.

3.2.2 Soil

No documentation was available showing that soils at the 185th ARW have been tested for PFCs; therefore it is unknown whether PFCs are present in the soil. Based on historical practices, they may be present in the soil in the areas of the AGE (Building 252), the Main Hangar (Building 261), the ANG Paint Facility (Building 241), the Apron, the Fire Station (Building 286), the Security Forces Building (Building 284), the Nozzle Testing Location, Stormwater Sewer Outfall 1, and Stormwater Sewer Outfall 2.

In their anionic forms, perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are water soluble and can migrate readily from soil to groundwater. The United States Environmental Protection Agency (USEPA) has not established Provisional Health Advisory Levels (PHALs) for PFOS and PFOA in soil (USEPA, 2014). The primary exposure pathway for PFOS and PFOA would be the ingestion of contaminated drinking water.

3.2.3 Sediment

No documentation was available showing that sediments at the 185th ARW have been tested for PFCs; therefore it is unknown whether PFCs are present in sediments. Based on historical practices, PFCs could be present in sediment in locations that have received drainage from the site, including the stormwater sewer system and the stormwater sewer system outfalls.

3.2.4 Surface Water

According to the Final Record of Decision Installation Restoration Program (IRP) Sites 1 through 5 dated January 2013 (NGB/A7OR 2013), the surface water hydrology of the area around the Base is dominated by the Missouri River located two miles west of the Base and its numerous tributaries. On the Base itself, surface water runoff is controlled by pavement, collected by the stormwater system, and is discharged to a ditch which parallels Harbor Drive east of the Base. Until 1984, water within the ditch had no downstream outlet and either evaporated or recharged into the alluvial aquifer. In 1984, the Harbor Drive ditch was reconstructed to provide a discharge to the Missouri River.

Based upon reported AFFF usage at the 185th ARW, PFCs could be present in surface water within the stormwater sewer system. According to the 185th ARW Industrial Storm Water Management Guidance Manual, the 185th ARW property is comprised of eleven drainage areas. Drainage areas 1-10 discharge at several locations along the main storm sewer, whose eventual outlet is located at Stormwater Sewer System Outfall 1, which discharges to a ditch along Harbor Drive. Drainage area 11, which encompasses the ANG Paint Facility, discharges to a single outlet that then discharges to a ditch along Perimeter Road (Stormwater Sewer System Outfall 2). It is important to note that the ditch along Harbor Drive receives drainage from many facilities in addition to the drainage from the 185th ARW property, including the Sioux Gateway Airport.

A figure showing the stormwater sewer system, including drainage basins and outfalls is included in Appendix C-2.

4.0 FINDINGS AND CONCLUSIONS

Eleven potential AOCs have been identified at the 185th ARW during this PA. Of these eleven sites, nine are recommended for further investigation.

Further investigation is recommended at the 185th ARW to characterize potential soil, groundwater, surface water, and sediment PFC contamination. In addition, verification of the structural integrity of the existing OWS systems and connected sanitary sewer is also advised.

Table 1 summarizes the recommendation and rationale for each potential AOC identified at the Base.

Table 1: Preliminary Assessment Report Summary and Recommendations

No.	Potential AFFF PFC AOC	GPS Coordinates		2-20 X		
		Latitude	Longitude	Rationale	Recommendation	
1	AGE (Building 252)	42.393864°	-96.370806°	Previously utilized AFFF fire suppression system. Known AFFF releases. Trench drains lead to sanitary via an OWS.	Proceed to SI, focus on soil and groundwater.	
2	Main Hangar (Building 261)	42.3954 <mark>17</mark> °	-96.372651°	Previously utilized AFFF fire suppression system. Known AFFF releases. Trench drains lead to sanitary via OWS.	Proceed to SI, focus on soil and groundwater.	
3	ANG Paint Facility (Building 241)	42.389079°	-96.375408°	Current AFFF fire suppression system. Known AFFF releases. Trench drains lead to sanitary via OWS.	Proceed to SI, focus on soil and groundwater.	
4	Apron	42.394150°	-96.373444°	Potential for AFFF releases in this area.	Proceed to SI. Focus on soil and groundwater.	
5	Fire Station (Building 286)	42.395917°	-96.376051°	Potential for AFFF releases in this area.	Proceed to SI. Focus on soil and groundwater at the southern portion of the apron.	
6	Security Forces (Building 284)	42.396479°	-96.3767 <mark>49</mark> °	Potential for AFFF releases in this area.	Proceed to SI. Focus on soil and groundwater at the southern portion of the apron.	
7	Nozzle Testing Location	42.395212°	-96.376373°	Nozzle testing was conducted on paved area adjacent to Building 284.	Proceed to SI. Focus on soil and groundwater.	

AFFF – Aqueous Film Forming Foam

PFC - Perfluorinated Compound

AOC - Area of Concern

GPS - Global Positioning System

NFA- No Further Action

OWS - Oil/Water Separator

SI - Site Investigation

Table 1 Continued: Preliminary Assessment Report Summary and Recommendations

No.	Potential AFFF PFC AOC	GPS Coordinates			
		Latitude	Longitude	Rationale	Recommendation
8	Stormwater Sewer System Outfall 1	42.392771°	-96.370118°	Potentially received stormwater impacted with AFFF.	Proceed to SI, focus on surface water and sediment.
9	Stormwater Sewer System Outfall 2	42.388817°	-96.372800°	Potentially received stormwater impacted with AFFF.	Proceed to SI, focus on surface water and sediment.
10	Hazmart Pharmacy (Building 281)	42.397395°	-96.374585°	55-gallon drums of AFFF stored on secondary containment. No known releases.	NFA
11	Supply Warehouse (Building 280)	42.397688°	-96.373903°	55-gallon drums of AFFF temporarily stored on secondary containment. No known releases.	NFA

AFFF - Aqueous Film Forming Foam

PFC - Perfluorinated Compound

AOC – Area of Concern

GPS - Global Positioning System

NFA- No Further Action

OWS - Oil/Water Separator

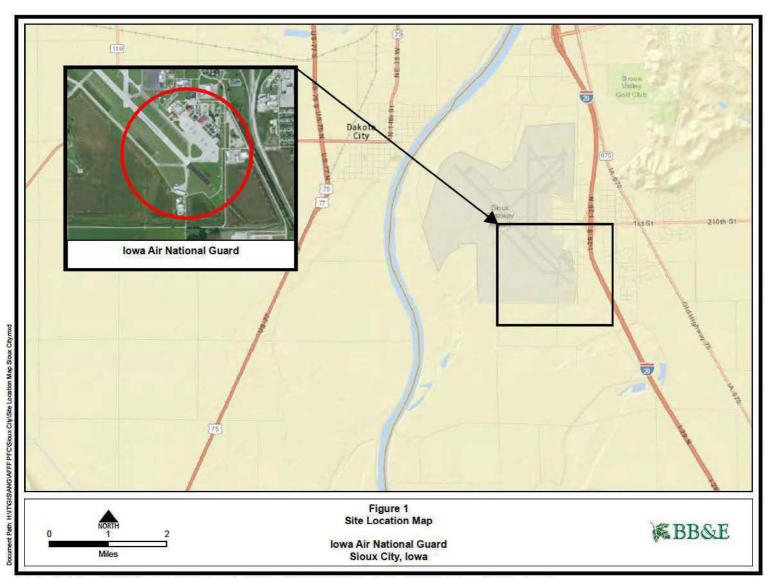
SI – Site Investigation

(This page intentionally left blank)

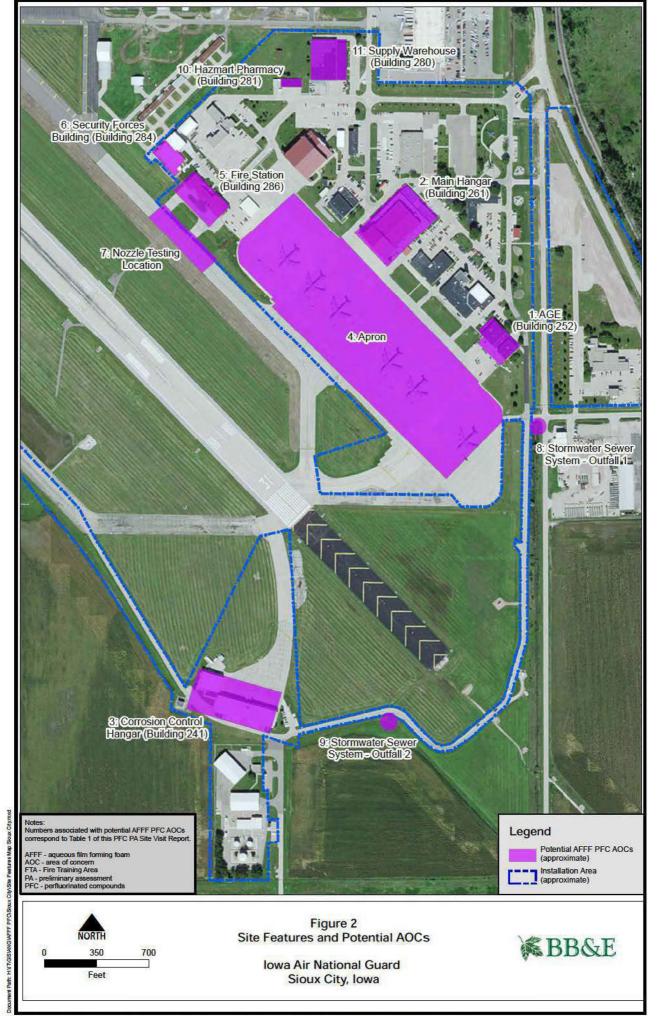
5.0 REFERENCES

BB&E, 2015. Final Perfluorinated Compound (PFC) Preliminary Assessment Work Plan, Prepared for Headquarters Air National Guard Andrews AFB, Maryland. July.

EDR, 2015. EDR Radius Map™ Report with Geocheck®. September.


NGB/A7OR, 2013. Final Record of Decision IRP Sites 1 through 5. January.

URS, 2015. Final Work Plan for the Regional Compliance Restoration Program Preliminary Assessment/Site Investigation. September.


USEPA, 2014. Peer Review of Health Effects Documents for PFOA and PFOS. February.

(This page intentionally left blank)

Service Layer Credits: Source: Esrì, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community KMA 11/3/2015

APPENDIX A PHOTO DOCUMENTATION

Photo 1: Trench drain in Building 252

Photo 2: Location where AFFF would have been pushed out of Building 252

Photo 3: Floor drain in Building 261 – Main Hangar

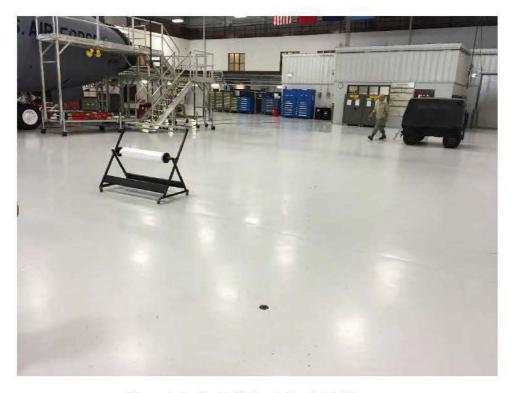


Photo 4: Inside Building 261 – Main Hangar

Appendix A 185th Air Refueling Wing, PFC PA Site Visit, Sioux City Iowa – November 3, 2015

Photo 5: HEF discharge system inside Building 261 – Main Hangar (former location of AFFF storage)

Photo 6: Northwest portion of the location where AFFF would have been pushed out of Building 261 – Main Hangar

Photo 7: Building 241 - ANG Paint Facility

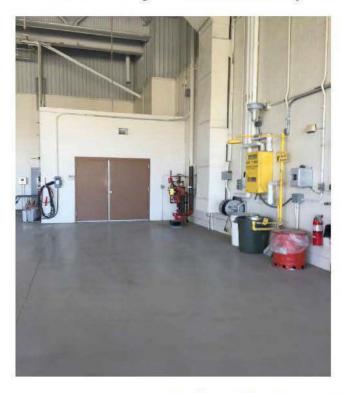


Photo 8: Foam cannon in Bay 1 of Building - 241 ANG Paint Facility

Photo 9: Trench drain by Bay 1 of Building 241 – ANG Paint Facility

Photo 10: AFFF storage tank in Building 241 - ANG Paint Facility

Photo 11: Ditch southeast of Building 241 - ANG Paint Facility drainage

Photo 12: Concrete apron north of Building 241 – ANG Paint Facility (Bays 1 and 2)

Photo 13: Building 286 - Current Fire Station

Photo 14: One of two sand traps associated with Building 286 - Current Fire Station

Photo 15: Trench drain and foam trailer inside Building 286 - Current Fire Station

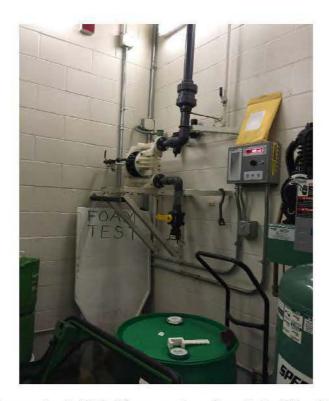


Photo 16: Pump for filling overhead AFFF fill system from drum in Building 286 – Current Fire Station

Photo 17: Trench train with drain plug in Building 286 - Current Fire Station

Photo 18: Trench train across drive at Building 286 – Current Fire Station (adjacent to nozzle testing area)

Appendix A 185th Air Refueling Wing, PFC PA Site Visit, Sioux City Iowa – November 3, 2015

Photo 19: Building 284 – Former Fire Station (Current Security Forces Building)

Photo 20: Lawn area southwest of Building 284 - Current Fire Station where nozzle testing occurred

Appendix A 185th Air Refueling Wing, PFC PA Site Visit, Sioux City Iowa – November 3, 2015

Photo 21: Lawn area northwest of Building 284 - Former Fire Station where nozzle testing occurred

Photo 22: Stormwater Sewer System outfall (looking south where sewer daylights)

Photo 23: Building 281 – Hazmat Pharmacy (location of AFFF drum storage)

Photo 24: AFFF drum storage in Building 281 – Hazmat Pharmacy

APPENDIX B

RECORDS OF COMMUNICATION

Interview Questions regarding AFFF use (At Present and back to 1970)

1. When did AFFF first start being used on this installation?

1977 when the unit converted to A-7's.

2. What are the years of active use for each Fire Training Area (FTA), Aircraft Hangar, Fire Department, other places AFFF may have been used (collectively Potential Areas of Concern (PAOC)?

1970's up to 1990

3. What type of AFFF is used or has been used on this installation (i.e. 3%, 6%, High Expansion Foam)?

3% and HEF

4. What manufacturer's AFFF products are used or were used on this installation (i.e. 3M, Ansul, Chemguard, etc.)?

3M and Ansul

5. Did you ever dispose of old bulk AFFF, if so, when and where?

No, to expensive

6. Is the AFFF stored as a mixed solution (3% or 6%) or do you formulate the AFFF on the installation?

Stored as 3% mixed solution

7. If AFFF is formulated on base, where is the solution mixed, contained, transferred, etc.?

N/A

8. Are your automated fire suppression systems currently charged with AFFF or have they been retrofitted for use of high expansion foam?

1 system has AFFF, installed in 2000 and 2 systems with HEF

9. If retrofitted, when was that done?
10. Do you have an inventory of the amount of AFFF stored on the installation, now and in the past, or present in automated fire suppression systems? Were retention ponds built to store discharged AFFF? Was the AFFF trickled to the sanitary sewer or left in the pond to infiltrate? Yes we keep an inventory of AFFF. Retention ponds were never built in the past.
 11. Provide a list of vehicles that carried AFFF, now and in the past, and where are/were they located? Any vehicles have a history of leaking AFFF? C-3, C-5, C-7, C-10, and C-11 currently. Historically all ARFF vehicles have been located in the fire stations.
12. How much AFFF (gallons) is/was carried/stored in the specified vehicles? Currently approx. 2465 gallons
13. Do you ever dispose of unused AFFF? If so, how and where? No
14. Has unused AFFF ever been disposed of in the past? If so, how and where? No
15. Do you/did you test the vehicles spray patterns to make sure equipment is working properly?
Yes
16. How often are/were these spray tests performed and can you provide the locations of these tests, now and in the past?
Monthly, we can provide locations back to 1987.

17. Can you describe the procedure on how vehicles and systems are/were supplied with AFFF?

Overhead fill stands currently for ARFF vehicles, also AFFF trailer and pump. In the past it was done using 5 gallon buckets by hand.

18. Can you provide the procedures on how these vehicles are/were cleaned/decontaminated and where vehicle cleaning is performed currently as well as performed in the past?

Vehicle cleaning is done in the wash bay located in the fire station or at the vehicles assigned bay. Occasionally vehicles are pulled outside and done on the concrete outside the parking bays.

19. Is/was there a specified area on the installation where vehicles are filled with AFFF and does this area have secondary containment in case of spills?

Vehicles are filled with AFFF at the fire station and there is secondary containment.

- truncularing moderned of the for secondary containment.

Corfered Rivered & inspected for four per relocate.

20. When a release of AFFF occurs during a fire training exercise, now and in the past, how is the AFFF cleaned and disposed of?

Currently there are no releases of AFFF. In the past the product was allowed to filter into the ground.

21. How many FTAs are/were on this installation and where are they?

2 see attached map.

22. How many FTAs are active and inactive?

2 and they are inactive.

23. What types of fuels/flammables were used at the FTAs?

JP-4

24. For inactive FTAs, when was the last time that fire training using AFFF was conducted at them? Find out ahead of time in Admin Record for former FTAs.

To the best of my knowledge 1990. - Fan was used with for approx. 3-4 hors peryon

25. What are/were the non-FTA locations where PFCs or AFFF release systems are installed (i.e. Hangars, Wastewater Treatment Plants, Fire Stations, etc.)? Where are/were these locations (Building numbers)?

See attachment

26. Do you have a list (Building names and numbers, current and demolished) where the fire suppression systems either currently contain or have contained AFFF?
N/A
 27. Do you have records of fuel spill logs and emergency response logs? Knowledge of aircraft mishaps/crashes? No – not used an presultaneary vacanate 28. Do you have recollection or records of AFFF being used as a precaution in response to fuel releases to prevent fires?
29. Do you have recollection or records of historical emergency response sites (i.e. crash sites and fires) where AFFF was used? See attachment We very and on the
30. Do you have recollection or record of emergency runway landings where foam might have been used as a precaution?
No
31. If not written records or incomplete written records, do you have anecdotal/verbal information and locations of spills or other emergency response incidents where AFF was used?
No
32. What is the typical procedure for removing dispensed AFFF from an area where it has been used?
Currently we would have to use an outside contractor for any releases.
33. Can you provide any other locations where AFFF has been stored, released, or used (i.e. hangars, buildings, fire stations, firefighting equipment testing and maintenance areas, emergency response sites, storm water/surface water, waste water treatment plants, and AFFF ponds)?

No
35. What were/are the years of operation of that chrome plating shop?
36. Do you know whether the shop has/had a foam blanket mist suppression system or used a fume hood for emissions control?
37. If foam blanket mist suppression was used, where was the foam stored, mixed, applied, etc.?
p.
38. Is there anyone else or other base organization personnel that you would recommend we interview? Name, organization, position, phone number, e-mail.
No
39. Was it common practice to wash away fuel spills with AFFF?
No, we used absorbent materials.
40. Identify drainage patterns around flightline/ramp area. Point source discharge is likely AFFF Area of Concern (AOC).
See environmental personnel.
Interview with the following on 12/3/15:
Lieutenant Colonel Neil Stockfleth - 185th ARW Environmental Manager
Chief Master Sergeant Mike Albrecht - 185th ARW Fire Chief Mr. Mike Kock - Fire Prevention Program, Inspection and Maintenance

Mr. David Miller - Paint Facility Manager Mr. Mike Dietrich - Real Property Manager

Major Kris Aldrich - Base Engineer

Lieutenant Colonel Gary Prescott - Base Engineer

Captain Adam Mcintyre - Deputy Base Engineer

34. Do you have or did you have a chrome plating shop on base? If no, skip to Question #38.

- Sioux Coty Wicher System - Sioux City grader System Forw. (- a number of outfalls
Missour, river via gen & the [n/nlo away) Lift Stuhen oxyste No orl nucley separator - at fire station - filtration system (2)
instilled when building was insalled (10-15 years) one for each 16.61 Noil Stockfiehn - 19years, 4 years as environmental manager. Full time last 8 years. - No disposed of AFFF during through environmental, so no disposed - Noice Albrecht, Chest Master Surgant, Fix Crest, Jaman 1990 Chest since October 1999. Mark Kock, Wayars, Fire prevention program, inspector manhthance of system David Miller, Paint facty manager on Gass, Yayens; - Mike Die trich Beal Property Manager, 7 mos,

adan McIntire, Degut BC, 3years. MASKris Aldridge, Base Engrees in whiting, 17 years, Carry Brescott, 11 Col Boor Engineer, 1984.

Perronal Systems garans

X S- Buirchy 252- Fuelcell repair hanger-system was removed

X J- Buirchy 261- AFFF to high expans when removed a contrator removed AFFF & any fact in place sport-serve storage to norment Top Supply whenouse 280 & no Known relacioes typically Stored in Hazmard Prairman 281 Secondary continent to pically Stored in + Fire Station 286 (current) 284 (historic), previous is nowaying & classroom space, previously owned by city, not now onned by AlG. - Builday 281. Bunt (241) will 2 2000, fill the boiling - at lost the full - scale, annually (30-35 gallons) - acceptance festing is full galo (~ 100 gallors), ROA (contrain

	encindrams in panet building (sealad during last few tests)
	agron out front (no aten basing or druin) pushed out & allow
•	- 252- with two inachvertent desups recalled, no time recalled, any form was likely president to apoon
	Buldy 761- ~ 2000-2001, Shut down fairly goick, mud 1980s, large release. Weyn most bour posted onto aproxi.
	Nozzle fest z - 3-4 gallors per vehicle, Airst tuesdayog the
•	Small spills when filling velucles, nothing notable.
	all trench drawns within the builty draw to santary system
•	- 2101 has oil water segarator - was there when cyten contined AFFF. - 252 has oil water segurator -
	No votestan polete tan ponde outste
	Olway wood 3% solution.

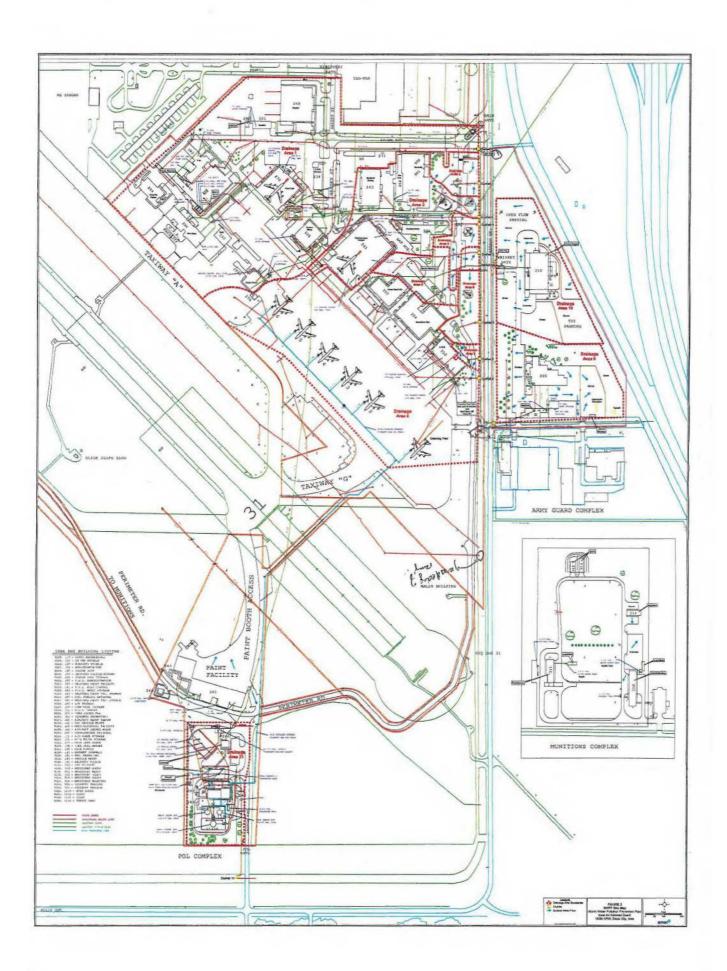
	Pau operates under our fort storm water per aut, so knowledge to ay surger occurs.
4-	The secondary Contament. Wely single walled up
	horze tody as pered are dallored to dissigned
	with higher the phase doors, or incore with higher of transactions at doors.
	- out Call 1, South, discharge to ppl-following gate value. Which discharge to disch.
	- Woder at many Gutfall, internent but, no known Dan Aald locater - Likely City property.
7.00	
- III SANGE	
2	

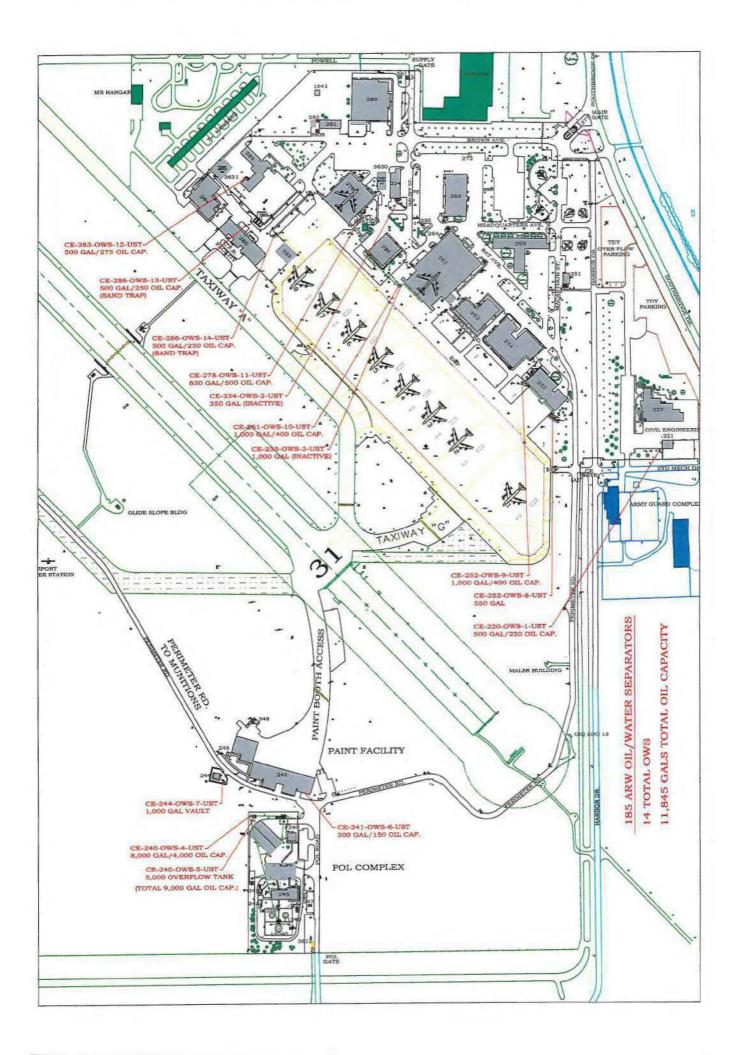
	Change Halling on ANIL CORROLL -
	Storm outfull is on AND property. - how caccess out falls at sets pount willy are outside the locke property (included dikely)
G .	outfalls at sets pount willy are outside the locate
- 2000	property (included ditte
	Thirty 261, Ack would be per That want expender.
	- Building 261, Ack would po per that would expended. - Old french draw (who was
	- a square arms
-	AFFF, vom.
//	
7-01-2-1-	
y	
35	
, , ,	

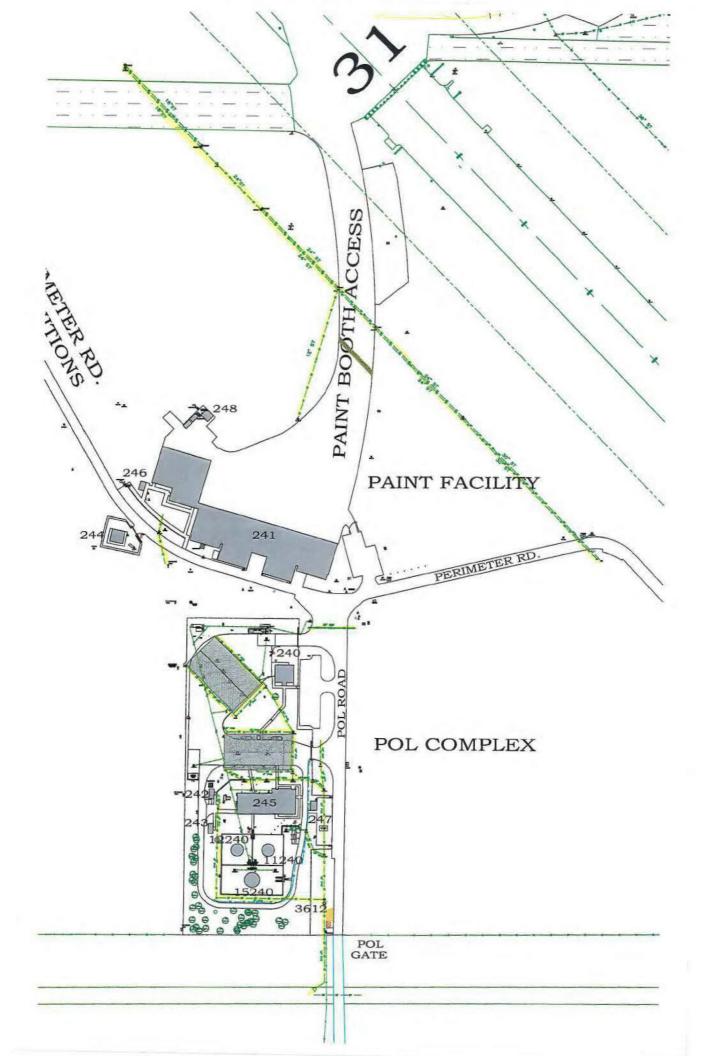
APPENDIX C SUPPORTING DOCUMENTATION

APPENDIX C-1 NOTICE OF DISCHARGE DOCUMENTATION

HAZARDOUS MATERIAL RELEASE REPORT FOR SIOUX CITY WASTE TREATMENT PLANT POC: MS. DESIREE McCASLEN


Date and Time of the Release: <u>The release was discovered by Fire Department personnel on</u>
Sunday, August 19, 2012 at approximately 7:30 a.m.
Exact Location of the Release: Bay 3 of Building 286, the base's Fire Department facility.
Type of Release:
Leak: X Fire: Spill: Explosion: Other:
Date and Time of Verbal Report to the IA DNR: <u>Tuesday, August 21, 2012 at approximately 2:30 p.m.</u>
Name, Mailing Address, and Telephone Number of Responsible Party: <u>Iowa Air National Guard - 185th</u>
Air Refueling Wing, 2920 Headquarters Avenue, Sioux City, IA 51111-1300. (712) 233-0690.
Name, Mailing Address, and Telephone Number of Person Reporting Incident: Kevin Jacobson,
Environmental Specialist, IA ANG-185ARW, 2920 Headquarters Avenue, Sioux City, IA 51111-
1300. (712) 233-0727.
Name/Telephone Number of On-Scene Contact: CMS Michael Albrecht, Fire Chief, (712) 233-0778.
Name of Materials Released, if known: Ansulite 3% AFFF (Aqueous Film Forming Foam).
Manifest/Shipping Invoice/Billing Label: NA.
Shipper/Manufacturer Identification: Ansul Incorporated, One Stanton Street, Marinette, WI 54143,
<u>(715)</u> 735-7411.
Container Type: Vehicle Bowser Pipeline Container
Placard/Label Information: NA.
Characteristics of Material, only if Readily Detectable:
Color: Straw Yellow, Clear Liquid.
Odor: Mild, sweet odor.
Physical Effects: None.
Physical State of Material: Gas LiquidX Solid
Potential Amount of Material Which May Have Been Released: Approximately 50 gallons of 3% AFFF,
flushed with an undetermined amount of water, through the base's sanitary sewer system to
the city's on-base lift station and through the city's sanitary sewer system to the waste
treatment plant.
Current Amount of Material Released: Same as above.
Other Hazardous Materials in the Area: None, besides fuel in Fire Department vehicles/equipment.
Significant Amounts of Material Entering:
Atmosphere: At waste treatment plant? Storm Water Drains: No. Sanitary Sewer Drains: Yes.
Surface Water: No. Soil: No.
Direction, Height, Color and Order of Vapor Cloud: NA.
Weather Conditions: NA.
Wind Direction and Speed: NA.
Local Terrain Conditions: Floodplain Flat.
Circumstances leading to the Release: One of the base's fire-fighting vehicles, which holds separate
containers of water and 3% AFFF, developed a leak in a valve of the 3% AFFF line. The valve is
positioned under the vehicle, directly behind the cab. The vehicle was positioned over a trench-


type floor drain; the leaking 3% AFFF traveled about 1 foot to the drain. With the vehicle being parked in this location and the leak's proximity to the drain, it's not difficult to see why the leak wasn't discovered until the shift change inspection of vehicles that Sunday morning. Once discovered, the fire department employee immediately tightened the valve to stop the leak and reported the incident to his superiors. The vehicle was moved and the visible release was cleaned up, using water from a garden-type hose in the work bay. An undetermined amount of water was used to clean up the release of 3% AFFF and flush the trench drain area.


Visible Effects and Containment Measures Taken: <u>The 3% AFFF stained the floor where it leaked, but there were no other on-site visible effects.</u> The leak was stopped by tightening the AFFF line valve.

After-Action (Lessons Learned) Report: Representatives from the 185ARW Fire Department, and
Civil Engineering and Environmental offices will be meeting in the immediate future to develop
a new policy and/or set of procedures to follow regarding releases of 3% AFFF and HEF (High
Expansion Foam) on base. The Sioux City Waste Treatment Plant's POC will be given an
opportunity to review and comment on any drafts of the proposed policy and/or procedures.

APPENDIX C-2 STORMWATER SEWER SYSTEM MAP

APPENDIX C-3

EDR ONE-MILE RADIUS WATER WELLS MAP

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

WELL SEARCH DISTANCE INFORMATION

DATABASE SEARCH DISTANCE (miles)

Federal USGS 1.000

Federal FRDS PWS Nearest PWS within 1.000 miles

State Database 1.250

FEDERAL USGS WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
A5	USGS40000318437	1/8 - 1/4 Mile ESE
63	USGS40000318528	1/2 - 1 Mile North
92	USGS40000318534	1/2 - 1 Mile NNE

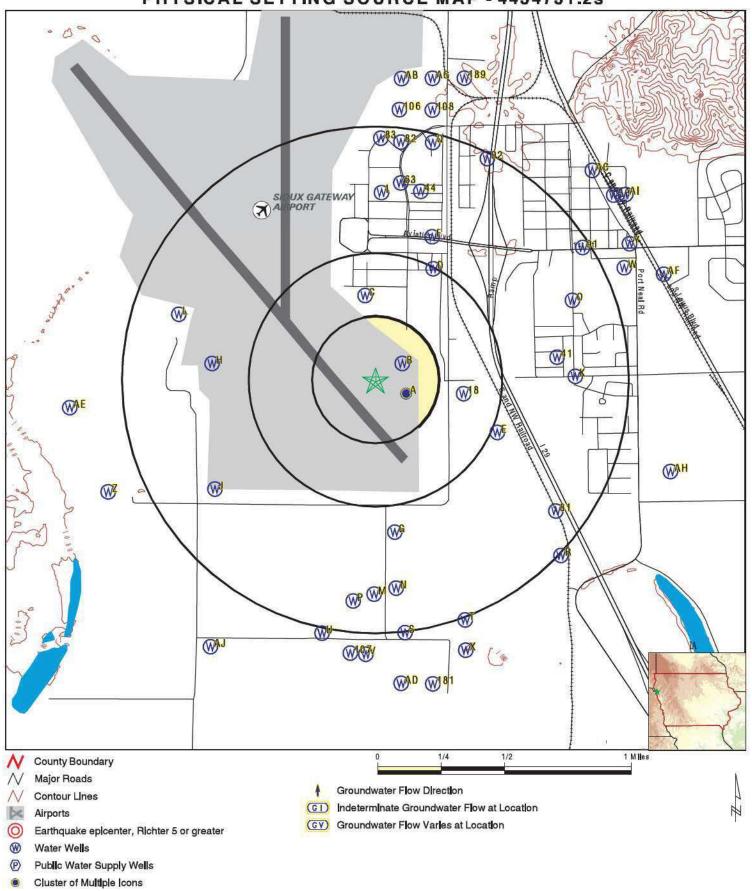
FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

MAP ID WELL ID LOCATION FROM TP

No PWS System Found

Note: PWS System location is not always the same as well location.

MAP ID	WELL ID	LOCATION FROM TP
A1	IAPU30000013511	0 - 1/8 Mile ESE
A2	IAPU30000013491	0 - 1/8 Mile ESE
B3	IAPU30000013423	0 - 1/8 Mile ENE
B4	IAPU30000013435	0 - 1/8 Mile ENE
C6	IAUS20000004509	1/4 - 1/2 Mile North
C7	IAPU3000013177	1/4 - 1/2 Mile North
C8	IAUS20000002138	1/4 - 1/2 Mile North
C9	IAPU30000013172	1/4 - 1/2 Mile North
C10	IAUS2000001382	1/4 - 1/2 Mile North
C11	IAPU3000013166	1/4 - 1/2 Mile North
C12	IAUS2000001634	1/4 - 1/2 Mile North
C13	IAPU3000013167	1/4 - 1/2 Mile North
C14	IAUS2000001221	1/4 - 1/2 Mile North
C15	IAPU3000013155	1/4 - 1/2 Mile North
C16	IAPU3000013151	1/4 - 1/2 Mile North
C17	IAUS20000002451	1/4 - 1/2 Mile North
18	IAPU3000013561	1/4 - 1/2 Mile East
D19	IAPU3000013154	1/4 - 1/2 Mile NNE
D20	IAPU30000013145	1/4 - 1/2 Mile NNE
D21	IAPU3000013141	1/4 - 1/2 Mile NNE
D22	IAPU30000013157	1/4 - 1/2 Mile NNE
D23	IAPU3000013147	1/4 - 1/2 Mile NNE
D24	IAPU3000013140	1/4 - 1/2 Mile NNE


MAP ID	WELL ID	LOCATION FROM TP
D25	IAPU30000013146	1/4 - 1/2 Mile NNI
E26	IAPU30000013676	1/2 - 1 Mile ESE
E27	IAPW3000004938	1/2 - 1 Mile ESE
	IAPU30000014938	
F28		1/2 - 1 Mile NNE
F29	IAPU30000013091	1/2 - 1 Mile NNE
G30	IAPW3000007559	1/2 - 1 Mile South
G31	IAPU3000013892	1/2 - 1 Mile South
F32	IAPU30000013080	1/2 - 1 Mile NNE
F33	IAPU30000013092	1/2 - 1 Mile NNE
F34	IAPU30000013084	1/2 - 1 Mile NNE
F35	IAPU3000013082	1/2 - 1 Mile NNE
H36	IAPU30000013204	1/2 - 1 Mile West
H37	IAPU30000013227	1/2 - 1 Mile West
H38	IAPU3000013215	1/2 - 1 Mile West
H39	IAPU3000013224	1/2 - 1 Mile West
H40	IAPU30000013226	1/2 - 1 Mile West
41	IAPW3000094380	1/2 - 1 Mile East
142	IAPU3000012959	1/2 - 1 Mile North
143	IAPW3000064973	1/2 - 1 Mile North
44	IAPU30000012980	1/2 - 1 Mile NNE
J45	IAPU30000013602	1/2 - 1 Mile SW
J46	IAPU3000013601	1/2 - 1 Mile SW
J47	IAPU3000013604	1/2 - 1 Mile SW
J48	IAPU30000013603	1/2 - 1 Mile SW
J49	IAPU30000013600	1/2 - 1 Mile SW
J50	IAPU30000013595	1/2 - 1 Mile SW
J51	IAPU3000013594	1/2 - 1 Mile SW
J52	IAPU30000013599	1/2 - 1 Mile SW
J53	IAPU3000013597	1/2 - 1 Mile SW
J54	IAPU30000013616	1/2 - 1 Mile SW
J55	IAPU30000013615	1/2 - 1 Mile SW
J56	IAPU30000013620	1/2 - 1 Mile SW
J57	IAPU30000013618	1/2 - 1 Mile SW
J58	IAPU3000013613	1/2 - 1 Mile SW
		1/2 - 1 Mile SW
J59	IAPU30000013608	
J60	IAPU30000013606	1/2 - 1 Mile SW
J61	IAPU30000013611	1/2 - 1 Mile SW
J62	IAPU3000013609	1/2 - 1 Mile SW
K64	IAPR3000001113	1/2 - 1 Mile East
K65	IAPU3000013607	1/2 - 1 Mile East
L66	IAPW3000087300	1/2 - 1 Mile WNW
L67	IAPU30000013086	1/2 - 1 Mile WNW
		1/2 - 1 Mile WNW
L68	IAPW3000060185	
M69	IAPU30000014037	1/2 - 1 Mile South
L70	IAPU30000013071	1/2 - 1 Mile WNW
N71	IAPU30000014071	1/2 - 1 Mile South
N72	IAPW3000013313	1/2 - 1 Mile South
L73	IAPW3000060184	1/2 - 1 Mile WNW
L74	IAPU30000013088	1/2 - 1 Mile WNW
075	IAUS20000013088	1/2 - 1 Mile ENE
076	IAPU30000013415	1/2 - 1 Mile ENE
M77	IAPW3000033866	1/2 - 1 Mile South

MAP ID	WELL ID	LOCATION FROM TP
M78	IAPU30000014099	1/2 - 1 Mile South
P79	IAPU3000014093	1/2 - 1 Mile South
P80	IAPR3000000003	1/2 - 1 Mile South
81	IAPW3000067684	1/2 - 1 Mile SE
82	IAPU30000012867	1/2 - 1 Mile North
83	IAPU30000012851	1/2 - 1 Mile North
Q84	IAPU30000012888	1/2 - 1 Mile NNE
Q85	IAPU30000012881	1/2 - 1 Mile NNE
Q86	IAPU30000012904	1/2 - 1 Mile NNE
Q87	IAPU30000012891	1/2 - 1 Mile NNE
Q88	IAPU30000012908	1/2 - 1 Mile NNE
Q89	IAPU30000012906	1/2 - 1 Mile NNE
Q90	IAPU30000012901	1/2 - 1 Mile NNE
91	IAPW3000098224	1/2 - 1 Mile ENE
R93	IAPU30000014148	1/2 - 1 Mile SE
R94	IAPR30000061584	1/2 - 1 Mile SE
S95	IAUS20000004879	1 - 2 Miles South
S96	IAPU3000014255	1 - 2 Miles South
T97	IAPU30000014257	1 - 2 Miles SSE
T98	IAPR30000071956	1 - 2 Miles SSE
U99	IAPU3000014157	1 - 2 Miles SSW
U100	IAPR30000015440	1 - 2 Miles SSW
R101	IAPW3000096312	1 - 2 Miles SE
V102	IAPU30000014247	1 - 2 Miles South
W103	IAPU3000013318	1/2 - 1 Mile ENE 1/2 - 1 Mile SE 1/2 - 1 Mile SE 1/2 - 1 Mile SE 1 - 2 Miles South 1 - 2 Miles SSE 1 - 2 Miles SSE 1 - 2 Miles SSW 1 - 2 Miles SSW 1 - 2 Miles SE 1 - 2 Miles SE 1 - 2 Miles SOuth 1 - 2 Miles SOuth 1 - 2 Miles ENE 1 - 2 Miles South
V104	IAPU30000014254	1 - 2 Miles South
W105	IAPR30000061321	1 - 2 Miles ENE 1 - 2 Miles North 1 - 2 Miles South 1 - 2 Miles NNE
106	IAPU3000012802	1 - 2 Miles North
107	IAPU30000014250	1 - 2 Miles South
108	IAPU30000012830	1 - 2 Miles NNE
W109	IAPU3000013387	1 - 2 Miles ENE
X110	IAPW3000064263	1 - 2 Miles SSE
X111	IAPU30000014331	1 - 2 Miles SSE
V112	IAPU30000014279	1 - 2 Miles South
X113	IAPR3000069719	1 - 2 Miles SSE
X114	IAPU30000014351	1 - 2 Miles SSE
Y115	IAUS2000003971	1 - 2 Miles ENE
Y116	IAPU30000013261	1 - 2 Miles ENE
Y117	IAPU30000013275	1 - 2 Miles ENE
Y118	IAPU30000013277	1 - 2 Miles ENE
X119	IAPU30000014346	1 - 2 Miles SSE
Y120	IAPU30000013252	1 - 2 Miles ENE
Z121	IAPU30000013533	1 - 2 Miles WSW
Z122	IAPW3000035450	1 - 2 Miles WSW
AA123	IAPU30000013118	1 - 2 Miles NE
AA124	IAUS2000001550	1 - 2 Miles NE
AA125	IAPU30000013105	1 - 2 Miles NE
AA126	IAPU30000013112	1 - 2 Miles NE
AA127	IAPU30000013115	1 - 2 Miles NE
AA128	IAPU30000013116	1 - 2 Miles NE
AA129	IAPU30000013109	1 - 2 Miles NE
AA130	IAPU30000013113	1 - 2 Miles NE

		LOCATION
MAP ID	WELL ID	LOCATION FROM TP
AB131	IAPU30000012734	1 - 2 Miles North
AB132	IAPU30000012731	1 - 2 Miles North
AC133	IAUS20000005917	1 - 2 Miles NE
AC134	IAPU30000013063	1 - 2 Miles NE
AC135	IAPU30000013067	1 - 2 Miles NE
AC136	IAPU30000013064	1 - 2 Miles NE
AA137	IAUS20000001447	1 - 2 Miles NE
AA138	IAPU30000013117	1 - 2 Miles NE
AB139	IAPU30000012718	1 - 2 Miles North
AB140	IAPU30000012724	1 - 2 Miles North
AB141	IAPU30000012720	1 - 2 Miles North
AB142	IAPU30000012709	1 - 2 Miles North
AD143	IAPU30000014377	1 - 2 Miles South
AE144	IAPU30000013203	1 - 2 Miles West
AD145	IAPU30000014378	1 - 2 Miles South
AF146	IAPU30000013394	1 - 2 Miles ENE
AF147	IAPU30000013405	1 - 2 Miles ENE
AG148	IAPU30000012748	1 - 2 Miles North
AG149	IAPU30000012772	1 - 2 Miles North
AG150	IAPU30000012767	1 - 2 Miles North
AG151	IAPU30000012756	1 - 2 Miles North
AG152	IAPU30000012764	1 - 2 Miles North
AG153	IAPU30000012751	1 - 2 Miles North
AG154	IAPU30000012757	1 - 2 Miles North
AG155	IAPU30000012768	1 - 2 Miles North
AG156	IAPU30000012754	1 - 2 Miles North
AG157	IAPU30000012771	1 - 2 Miles North
AG158	IAPU30000012755	1 - 2 Miles North
AG159	IAPU30000012750	1 - 2 Miles North
AG160	IAPU30000012760	1 - 2 Miles North
AG161	IAPU30000012762	1 - 2 Miles North
AG162	IAPU30000012761	1 - 2 Miles North
AG163	IAPU30000012763	1 - 2 Miles North
AG164	IAPU30000012746	1 - 2 Miles North
AG165	IAPU30000012744	1 - 2 Miles North
AG166	IAPU3000012758	1 - 2 Miles North
AG167	IAPU30000012749	1 - 2 Miles North
AG168	IAPU30000012747	1 - 2 Miles North
AE169	IAUS2000000109	1 - 2 Miles West
AE170	IAPU30000013213	1 - 2 Miles West
AH171	IAPR30000017381	1 - 2 Miles ESE
AG172	IAPU30000012743	1 - 2 Miles North
AG173	IAPU3000012752	1 - 2 Miles North
AA174	IAPU30000013125	1 - 2 Miles NE
AA175	IAPU30000013127	1 - 2 Miles NE
AA176	IAPU30000013133	1 - 2 Miles NE
AA177	IAPW3000010995	1 - 2 Miles NE
AA178	IAPW3000010996	1 - 2 Miles NE
AA179	IAPW3000016881	1 - 2 Miles NE
AF180	IAPU30000013429	1 - 2 Miles ENE
181	IAPU3000014390	1 - 2 Miles South
AF182	IAPU30000013427	1 - 2 Miles ENE

MAP ID	WELL ID	LOCATION FROM TP
AH183	IAPU30000013980	1 - 2 Miles ESE
AI184	IAPW3000013356	1 - 2 Miles NE
AI185	IAPU3000013126	1 - 2 Miles NE
AJ186	IAPU3000014094	1 - 2 Miles SSW
AJ187	IAPU30000014081	1 - 2 Miles SSW
AJ188	IAPR3000071943	1 - 2 Miles SSW
189	IAPU30000012778	1 - 2 Miles NNE

PHYSICAL SETTING SOURCE MAP - 4434731.2s

SITE NAME:

Sioux City ANGB 2920 Headquarters Avenue ADDRESS:

Sioux City IA 51111 LAT/LONG: 42.3929 / -96.3756

CLIENT: B.B. & E CONTACT: Nalla Hoseln

INQUIRY #: 4434731.2s

October 09, 2015 7:51 pm DATE:

Map ID Direction Distance

Database EDR ID Number Elevation

A1 ESE 0 - 1/8 Mile

IAPU30000013511 IA WELLS

Lower

Mapid: 13511 Wellid: 27613 PLUG ld src fld: recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 36, SE, NE, NW

County: Woodbury Est loc ac: Calc. +/- 140m. C p date: n.a.

Depth: 28 Owner name: City Of Sioux City, Mw-r31-2

Other info: Well plugged: 9/27/1996; Well type: < 18" dia.

222311.83 Xcoord: 4698822 Ycoord: Hlink: Not Reported IAPU30000013511 Site id:

ESE 0 - 1/8 Mile

IAPU30000013491 IA WELLS

Lower

Mapid: 13491 Wellid: 27612 ld src fld: recordno Datasrc: **PLUG**

Registered abandoned wells T. 88 N., R. 48 W., Sec. 36, SE, NE, NW Well type: Location:

County: Woodbury Est loc ac: Calc. +/- 140m. n.a.

Depth: C p date:

Owner name: City Of Sioux City, Mw-r31-1

Other info: Well plugged: 9/27/1996; Well type: < 18" dia.

222318.83 Xcoord: 4698829 Ycoord: Hlink: Not Reported Site id: IAPU30000013491

IA WELLS IAPU30000013423 ENE

0 - 1/8 Mile Lower

> 13423 Wellid: 1717 Mapid: ld src fld: wnumber Datasrc: **GEOU**

Well type: IGS well database Location: T. 88N., R. 48W., Sec. 36, NE, SE, SW

Calc. +/- 140 m. WOODBURY County: Est loc ac: 07/01/1943 235 Depth: C p date:

SIOUX CITY AIR BASE Owner name: Other info: Well type: Public access

Xcoord: 222327.12 Ycoord: 4699020.39

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=1717

Site id: IAPU30000013423

Map ID Direction Distance

Elevation Database EDR ID Number

ENE IA WELLS IAPU3000013435

0 - 1/8 Mile Lower

 Mapid:
 13435
 Wellid:
 1713

 Id src fld:
 wnumber
 Datasrc:
 GEOU

Well type: IGS well database Location: T. 88N., R. 48W., Sec. 36, NE, SE, SW

 County:
 WOODBURY
 Est loc ac:
 Calc. +/- 140 m.

 Depth:
 285
 C p date:
 07/01/1943

Owner name: SIOUX CITY AIR BASE

Other info: Bedrock depth: 215; Well type: Test (water only)

Xcoord: 222327.12 Ycoord: 4699020.39

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=1713

Site id: IAPU30000013435

Higher

Org. Identifier: USGS-IA

Formal name: USGS Iowa Water Science Center

Monloc Identifier: USGS-422332096222001

Monloc name: 088N48W36ADCA 01713 1943Sioux City Air Base Test 3

Monloc type: Well

Monloc desc: Not Reported

Huc code: 10230001 Drainagearea value: Not Reported Not Reported Drainagearea Units: Not Reported Contrib drainagearea: Contrib drainagearea units: Not Reported 42.3922157 Latitude: Longitude: -96.3725291 Sourcemap scale: 24000 Horiz Acc measure: Unknown Horiz Acc measure units: Unknown

Horiz Collection method: Interpolated from map

Horiz coord refsys: NAD83 Vert measure val: 1090
Vert measure units: feet Vertacc measure val: 1

Vert accreasure units: feet
Vertcollection method: Unknown

Vert coord refsys: NGVD29 Countrycode: US

Aquifername: Lower Cretaceous aquifers

Formation type: Dakota Group

Aquifer type: Not Reported

Construction date: 19430701 Welldepth: 285

Welldepth units: ft Wellholedepth: Not Reported

Wellholedepth units: Not Reported

Ground-water levels, Number of Measurements: 0

C6 North IA WELLS IAUS20000004509

1/4 - 1/2 Mile Lower

Maplabelna: City Of Sioux City-W3752

Legendtype: 39 Publicview: 0

 Locid:
 20000321634

 Stfacid:
 310429928

 Progid:
 7547

Facname: City Of Sioux City

Opstatus: Drilled Pistartdat: 12-JUL-05

Subname: W3752

Subprogid: 4945 Subaltidnu: Not Reported

Wellname: Not Reported Wellstatus: Not Reported

Totaldepth: 50

Drilldate: 30-DEC-99 Aquifertyp: Unconsolidated - Drift, Alluv, Bur

Aquiferran: Primary Countyname: Woodbury 20 Fo: Accuracy: 3 Colmthtxt: INTERPOLATION-PHOTO WELL Refpnttxt: Verifytxt: Not Reported Collectby: WKTU

Coldate: 14-MAR-05

Loccomment: placed based on map, wrong legal desc
Congress: 5 Sthouse: 054

Strenate: 27 Huc: 1023000108

Hyperlink: http://programs.iowadnr.gov/wateruse/

Lat: 42.39749 Lon: -96.37625 Xcoord: 222119 Ycoord: 4699435

Site id: IAUS20000004509

North IA WELLS IAPU30000013177

1/4 - 1/2 Mile Lower

Mapid: 13177 Wellid: W3752 Id src fld: subname Datasrc: WTRU

Well type: Water Use Permit Wells Location: T88N, R48W, Sec. 36, NE, NW, SE

County: Woodbury Est loc ac: +/-20

Depth: 50 C p date: Not Reported

Owner name: City Of Sioux City

Other info: Water Use Permit 7547; Primary use: Aquifer remediation

Xcoord: 222119 Ycoord: 4699435

Hlink: https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=310429928

Site id: IAPU30000013177

C8
North
1/4 - 1/2 Mile

IA WELLS
IAUS20000002138

Lower

Maplabelna: City Of Sioux City-W3337

Legendtype: 39 Publicview: 0

 Locid:
 20000321636

 Stfacid:
 310429928

 Progid:
 7547

Facname: City Of Sioux City

Opstatus: Drilled Pistartdat: 12-JUL-05

Subname: W3337 Subprogid: 4944

Subprogid: 4944 Subaltidnu: Not Reported

Wellname: Not Reported

Wellstatus: Not Reported

Totaldepth:

Drilldate: 30-DEC-99 Aquifertyp: Unconsolidated - Drift, Alluv, Bur

Aquiferran: Primary Countyname: Woodbury Fo: Accuracy: 20 3 INTERPOLATION-PHOTO Refpnttxt: WELL Colmthtxt: Verifytxt: Not Reported Collectby: WKTU

Coldate: 14-MAR-05

placed based on map, wrong legal desc Loccomment: Sthouse: Congress:

054 Stsenate: 27 Huc: 1023000108

http://programs.iowadnr.gov/wateruse/ Hyperlink: Lat: 42.39765

-96.37609 Lon: 222133 Xcoord: Ycoord: 4699452

Site id: IAUS20000002138

C9 IA WELLS IAPU30000013172 North 1/4 - 1/2 Mile

Lower

W3337 Mapid: 13172 Wellid: ld src fld: subname Datasrc: WTRU

Well type: Water Use Permit Wells Location: T88N, R48W, Sec. 36, NE, NW, SE

+/-20 County: Woodbury Est loc ac: Depth: 50 C p date: Not Reported

Owner name: City Of Sioux City

Other info: Water Use Permit 7547; Primary use: Aquifer remediation

Xcoord: 222133 4699452 Ycoord:

Hlink: https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=310429928

Site id: IAPU30000013172

C10 IAUS20000001382 IA WELLS North 1/4 - 1/2 Mile

Lower

Maplabelna: City Of Sioux City-W5615

Legendtype: Publicview: 0

Locid: 20000321635 Stfacid: 310429928 Progid: 7547

Facname: City Of Sioux City

Drilled: No/Unknown Pistartdat: 12-JUL-05 Opstatus:

Subname: W5615

Subprogid: 4943 Subaltidnu: Not Reported

Not Reported Wellname: Wellstatus: Not Reported

Totaldepth: 50

30-DEC-99 Unconsolidated - Drift, Alluv, Bur Drilldate: Aquifertyp:

Aquiferran: Primary Countyname: Woodbury Fo: 3 Accuracy: 20 INTERPOLATION-PHOTO Colmthtxt: Refpnttxt: WELL Verifytxt: Not Reported Collectby: WKTU

Coldate: 14-MAR-05

Loccomment: placed based on map, wrong legal desc

Congress: 5 Sthouse: 054

Stsenate: 27 Huc: 1023000108

Hyperlink: http://programs.iowadnr.gov/wateruse/

Lat: 42.39765 Lon: -96.37668 Xcoord: 222084 Ycoord: 4699454

Site id: IAUS20000001382

C11
North
IA WELLS IAPU30000013166

1/4 - 1/2 Mile Lower

Mapid: 13166 Wellid: W5615
Id src fld: subname Datasrc: WTRU

Well type: Water Use Permit Wells Location: T88N, R48W, Sec. 36, NE, NW, SE

County: Woodbury Est loc ac: +/-20
Depth: 50 C p date: Not Reported

Owner name: City Of Sioux City

Other info: Water Use Permit 7547; Primary use: Aquifer remediation

Xcoord: 222084 Ycoord: 4699454

Hlink: https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=310429928

Site id: IAPU30000013166

C12 IA WELLS IAUS2000001634

North 1/4 - 1/2 Mile Lower

Maplabelna: City Of Sioux City-W3564

Legendtype: 39 Publicview: 0

Locid: 20000321637 Stfacid: 310429928 Progid: 7547

Facname: City Of Sioux City

Opstatus: Drilled Pistartdat: 12-JUL-05

Subname: W3564
Subprogid: 4947 Subaltidnu: Not Reported

Wellname: Not Reported Wellstatus: Not Reported

Totaldepth: 50

Drilldate: 30-DEC-99 Aquifertyp: Unconsolidated - Drift, Alluv, Bur

 Aquiferran:
 Primary
 Countyname:
 Woodbury

 Fo:
 3
 Accuracy:
 20

 Colmthtxt:
 INTERPOLATION-PHOTO
 Refpnttxt:
 WELL

 Verifytxt:
 Not Reported
 Collectby:
 WKTU

Coldate: 14-MAR-05

Loccomment: placed based on map, wrong legal desc

Congress: 5 Sthouse: 054

Stsenate: 27 Huc: 1023000108

Hyperlink: http://programs.iowadnr.gov/wateruse/

Lat: 42.39771 Lon: -96.37639 Xcoord: 222109 Ycoord: 4699459

Site id: IAUS20000001634

Map ID Direction Distance

Elevation Database **EDR ID Number**

C13 IA WELLS IAPU30000013167 North

1/4 - 1/2 Mile Lower

Lower

Lower

Mapid: 13167 Wellid: W3564 WTRU ld src fld: subname Datasrc:

Well type: Water Use Permit Wells Location: T88N, R48W, Sec. 36, NE, NW, SE

Woodbury County: Est loc ac: +/-20 Not Reported Depth: 50 C p date: City Of Sioux City Owner name:

Water Use Permit 7547; Primary use: Aquifer remediation Other info:

222109 Xcoord: 4699459 Ycoord:

Hlink: https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=310429928

IAPU30000013167 Site id:

IAUS20000001221 North IA WELLS 1/4 - 1/2 Mile

Maplabelna: City Of Sioux City-W3565

0 Legendtype: Publicview:

Locid: 20000321638 Stfacid: 310429928 Progid: 7547

Facname: City Of Sioux City

Opstatus: Drilled Pistartdat: 12-JUL-05

W3565 Subname:

Subprogid: 4948 Subaltidnu: Not Reported

Wellname: Not Reported Wellstatus: Not Reported Totaldepth: 50

Drilldate: 30-DEC-99 Aquifertyp: Unconsolidated - Drift, Alluv, Bur

Primary Aquiferran: Countyname: Woodbury Fo: 3 Accuracy: 20 Colmthtxt: INTERPOLATION-PHOTO Refpnttxt: WELL WKTU Verifytxt: Not Reported Collectby: Coldate: 14-MAR-05

Loccomment:

placed based on map, wrong legal desc Congress: Sthouse: 054

Stsenate: 27 Huc: 1023000108

Hyperlink: http://programs.iowadnr.gov/wateruse/

42.39787 Lat: -96.37666 Lon: Xcoord: 222087 Ycoord: 4699478

Site id: IAUS20000001221

C15 IA WELLS IAPU30000013155 North 1/4 - 1/2 Mile

Mapid: 13155 Wellid: W3565 ld src fld: subname Datasrc: WTRU

Well type: Water Use Permit Wells Location: T88N, R48W, Sec. 36, NE, NW, SE

+/-20 County: Woodbury Est loc ac: Depth: 50 C p date: Not Reported

Owner name: City Of Sioux City

Other info: Water Use Permit 7547; Primary use: Aquifer remediation

Xcoord: 4699478 Ycoord:

https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=310429928 Hlink:

Site id: IAPU30000013155

C16 North 1/4 - 1/2 Mile Lower IA WELLS IAPU30000013151

13151 Wellid: W3753 Mapid: ld src fld: subname Datasrc: WTRU

Well type: Water Use Permit Wells T88N, R48W, Sec. 36, NE, NW, SE Location:

County: Woodbury Est loc ac: +/-20 Depth: 50 C p date: Not Reported

Owner name: City Of Sioux City

Other info: Water Use Permit 7547; Primary use: Aquifer remediation

Xcoord: 222117 4699487 Ycoord:

https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=310429928 Hlink:

Site id: IAPU30000013151

C17 IA WELLS IAUS20000002451

North 1/4 - 1/2 Mile Lower

Maplabelna: City Of Sioux City-W3753 Legendtype: 39 Publicview: 0

20000321639 Locid: Stfacid: 310429928 Progid: 7547

City Of Sioux City Facname:

Pistartdat: 12-JUL-05 Opstatus: Drilled

Subname: W3753 Subprogid: 4946 Subaltidnu: Not Reported

Wellname: Not Reported Not Reported Wellstatus:

Totaldepth: 50

30-DEC-99 Unconsolidated - Drift, Alluv, Bur Drilldate: Aquifertyp:

Aquiferran: Primary Countyname: Woodbury Fo: 3 Accuracy: 20 INTERPOLATION-PHOTO WELL Colmthtxt: Refpnttxt: Verifytxt: Not Reported Collectby: WKTU

14-MAR-05 Coldate:

Loccomment: placed based on map, wrong legal desc

054 Congress: 5 Sthouse:

Stsenate: 27 Huc: 1023000108

Hyperlink: http://programs.iowadnr.gov/wateruse/

Lat: 42.39796 Lon: -96.3763 Xcoord: 222117 Ycoord: 4699487

Site id: IAUS20000002451

18 East IA WELLS IAPU30000013561

1/4 - 1/2 Mile Higher

Mapid: 13561 Wellid: 13853 Id src fld: recordno Datasrc: PLUG

Well type: Registered abandoned wells Location: T. 88 N., R. 47 W., Sec. 31, SW, NW, NW

na

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: 13 C p date:

Owner name: Iowa Army National Guard, Iowa Army National Other info: Well plugged: 11/13/1991; Well type: < 18" dia.

 Xcoord:
 222709.02

 Ycoord:
 4698813

 Hlink:
 Not Reported

 Site id:
 IAPU30000013561

D19
NNE
IA WELLS
IAPU30000013154

1/4 - 1/2 Mile Lower

 Mapid:
 13154
 Wellid:
 33537

 Id src fld:
 recordno
 Datasrc:
 PLUG

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 36, NE, NE, NE

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: 33 C p date: n.a.

Owner name: Sioux Gateway Airport

Other info: Well plugged: 10/28/1998; Well type: < 18" dia.

 Xcoord:
 222542.53

 Ycoord:
 4699608.5

 Hlink:
 Not Reported

 Site id:
 IAPU30000013154

D20
NNE
IA WELLS
IAPU30000013145
1/4 - 1/2 Mile

Lower

Mapid: 13145 Wellid: 33534
Id src fld: recordno Datasrc: PLUG

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 36, NE, NE, NE

 County:
 Woodbury
 Est loc ac:
 Calc. +/- 140m.

 Depth:
 31
 C p date:
 n.a.

Depth: 31
Owner name: Sioux Gateway Airport

Other info: Well plugged: 10/28/1998; Well type: < 18" dia.

 Xcoord:
 222546.53

 Ycoord:
 4699606.5

 Hlink:
 Not Reported

Site id: IAPU30000013145

D21 NNE IA WELLS IAPU30000013141

1/4 - 1/2 Mile Lower

> 13141 Wellid: 33531 Mapid: PLUG ld src fld: recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 36, NE, NE, NE

Woodbury Calc. +/- 140m. County: Est loc ac: C p date:

Depth:

Owner name: Sioux Gateway Airport

Other info: Well plugged: 10/20/1998; Well type: < 18" dia.

Xcoord: 222540.53 Ycoord: 4699610.5 Hlink: Not Reported IAPU30000013141 Site id:

D22 IA WELLS IAPU30000013157 NNE

1/4 - 1/2 Mile Lower

> Wellid: 33532 Mapid: 13157 ld src fld: **PLUG** recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 36, NE, NE, NE

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: 33 C p date: n.a.

Owner name: Sioux Gateway Airport

Well plugged: 10/20/1998; Well type: < 18" dia. Other info:

222548.53 Xcoord: Ycoord: 4699610.5 Hlink: Not Reported IAPU30000013157 Site id:

NNE IA WELLS IAPU30000013147

1/4 - 1/2 Mile Lower

Depth:

Mapid: 13147 Wellid: 33536 ld src fld: recordno Datasrc: **PLUG**

Registered abandoned wells T. 88 N., R. 48 W., Sec. 36, NE, NE, NE Well type: Location:

C p date:

Woodbury Calc. +/- 140m. County: Est loc ac:

Owner name: Sioux Gateway Airport

Well plugged: 10/28/1998; Well type: < 18" dia. Other info:

222554.53 Xcoord: Ycoord: 4699614.5 Not Reported Hlink:

n.a.

Site id: IAPU30000013147

D24 NNE IA WELLS IAPU30000013140

1/4 - 1/2 Mile Lower

> 13140 Wellid: 33535 Mapid: PLUG ld src fld: recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 36, NE, NE, NE

Woodbury Calc. +/- 140m. County: Est loc ac: C p date:

Depth: 33 Owner name: Sioux Gateway Airport

Well plugged: 10/28/1998; Well type: < 18" dia. Other info:

222547.53 Xcoord: Ycoord: 4699620.5 Hlink: Not Reported IAPU30000013140 Site id:

D25 IA WELLS IAPU30000013146 NNE

1/4 - 1/2 Mile Lower

> 33533 Mapid: 13146 Wellid: **PLUG** ld src fld: recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 36, NE, NE, NE

Woodbury Est loc ac: Calc. +/- 140m. County:

Depth: 33 C p date: n.a.

Owner name: Sioux Gateway Airport

Well plugged: 10/28/1998; Well type: < 18" dia. Other info:

222547.53 Xcoord: Ycoord: 4699621.5 Hlink: Not Reported IAPU30000013146 Site id:

IA WELLS IAPU30000013676

1/2 - 1 Mile Lower

> 13676 Wellid: 2081350 Mapid: ld src fld: wellnmbr Datasrc: **PWTS**

Private well tracking system T. 88 N., R. 47W., Sec. 31, SE, NW, SW, SE, NE Well type: Location:

nom. +/- 25m. County: Woodbury Est loc ac: 10/31/2001 Depth: 193 C p date:

Owner name: Not Reported

Status: Active; Well use: Commercial Other info:

222912.888944 Xcoord: Ycoord: 4698558.67489

http://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2081350&reportName=WellPrintout Hlink:

Site id: IAPU30000013676

E27
ESE IA WELLS IAPW30000004938

1/2 - 1 Mile Lower

 Objectid:
 4938
 Iwellid:
 2083993

 Wellnmbr:
 2081350
 Pmtnmbr:
 Not Reported

Twp: 88
Rge: 47
Ew: W
Sec: 31

Qqqqq: SE, NW, SW, SE, NE

Elev: 0

Elev acc: Not Reported

Well depth: 193 Br depth: 0 Wtr depth: 0 Latitude: 42.3899 Longitude: -96.3662 Dte done: 31-OCT-01 Cty num: 97 Woodbury County: Drlr name: Not Reported

Owner name: ,
Cnstr mthd: Other
Fm rmk: Not Reported
Well use: Commercial
Status: Active

Ht pmp no: 0

Permit: Not Reported Plugging: Not Reported Renovate: Not Reported Test: Not Reported

Xcoord: 222912.888944 Ycoord: 4698558.67489

Horiz acc: Not Reported Has litho: 1
Has prod: 1 Has wq: 0

Has constr: 1. Wnumber: 0.

Hlink: https://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2081350&reportName=WellPrintout

Site id: IAPW30000004938

F28
NNE
IA WELLS
IAPU30000013095

1/2 - 1 Mile Lower

 Mapid:
 13095
 Wellid:
 27550

 Id src fld:
 recordno
 Datasrc:
 PLUG

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, SE, SE, SE

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: 28 C p date: n.a.

Owner name: City Of Sioux City, Mw-335-8

Other info: Well plugged: 9/5/1996; Well type: < 18" dia.

 Xcoord:
 222546.84

 Ycoord:
 4699811.5

 Hlink:
 Not Reported

Site id: IAPU30000013095

F29 NNE IA WELLS IAPU30000013091

1/2 - 1 Mile Lower

> 13091 Wellid: 27545 Mapid: ld src fld: PLUG recordno Datasrc:

T. 88 N., R. 48 W., Sec. 25, SE, SE, SE Well type: Registered abandoned wells Location:

Woodbury Est loc ac: Calc. +/- 140m. County: C p date:

Depth: Owner name: City Of Sioux City, Mw-335-1

Other info: Well plugged: 9/5/1996; Well type: < 18" dia.

Xcoord: 222544.84

Ycoord: 4699812.5 Not Reported Hlink: IAPU30000013091 Site id:

G30 South IA WELLS IAPW30000007559

1/2 - 1 Mile Lower

> Status: Ht pmp no:

7559 Iwellid: 2087616 Objectid: Wellnmbr: 2084118 Pmtnmbr: 12402

Twp: 87 Rge: 48 Ew: W Sec: 1

NE, NE, NW, SE, SW Qqqqq:

Elev: 0

Elev acc: Not Reported

Well depth: 0 Br depth: 0 Wtr depth: 0 Latitude: 42.3842 Longitude: -96.3741 Dte done: 30-DEC-99 Cty num: 97 Woodbury County: Soole Well Drilling Drlr name: Owner name: DEROCHER, RICH Cnstr mthd: Not Reported Not Reported Fm rmk: Household Well use: Retired

X Not Reported Permit: Plugging: Not Reported Not Reported Renovate: Test:

Xcoord: 222237.375969 Ycoord: 4697951.48601

0

0 Horiz acc: Not Reported Has litho: 0 Has prod: 0 Has wq:

Has constr. 0 Wnumber: 0

Hlink: https://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2084118&reportName=WellPrintout

IAPW30000007559 Site id:

G31 South IA WELLS IAPU30000013892

1/2 - 1 Mile Lower

> 13892 Wellid: 2084118 Mapid: ld src fld: wellnmbr Datasrc: **PWTS**

T. 87 N., R. 48W., Sec. 1, NE, NE, NW, SE, SW Well type: Private well tracking system Location:

County: Woodbury Est loc ac: nom. +/- 25m. Depth: 0 C p date: Not Reported

Owner name: DEROCHER, RICH Other info: Status: Retired; Well use: Household

Xcoord: 222237.375969

Ycoord: 4697951.48601

http://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2084118&reportName=WellPrintout Hlink:

Site id: IAPU30000013892

NNE IA WELLS IAPU30000013080

1/2 - 1 Mile Lower

> Mapid: 13080 Wellid: 27546 Id src fld: recordno Datasrc: **PLUG**

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, SE, SE, SE

n.a.

Woodbury Calc. +/- 140m. County: Est loc ac: C p date:

Depth: Owner name: City Of Sioux City, Mw-335-2

Other info: Well plugged: 9/5/1996; Well type: < 18" dia.

222550.84 Xcoord: Ycoord: 4699812.5 Hlink: Not Reported Site id: IAPU30000013080

F33 NNE IA WELLS IAPU30000013092 1/2 - 1 Mile

Lower

27547 Mapid: 13092 Wellid: ld src fld: recordno Datasrc: PLUG

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, SE, SE, SE

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: 25 C p date: n.a.

Owner name: City Of Sioux City, Mw-335-4

Well plugged: 9/5/1996; Well type: < 18" dia. Other info:

Xcoord: 222545.84 4699820.5 Ycoord: Hlink: Not Reported

Site id: IAPU30000013092

NNE IA WELLS IAPU30000013084

1/2 - 1 Mile Lower

> 13084 Wellid: 27549 Mapid: PLUG ld src fld: Datasrc: recordno

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, SE, SE, SE

Woodbury Calc. +/- 140m. County: Est loc ac: C p date:

Depth:

Owner name: City Of Sioux City, Mw-335-7

Other info: Well plugged: 9/5/1996; Well type: < 18" dia.

222551.84 Xcoord: Ycoord: 4699821.5 Hlink: Not Reported IAPU30000013084 Site id:

NNE IA WELLS IAPU30000013082 1/2 - 1 Mile

Lower

13082 Wellid: 27548 Mapid: **PLUG** ld src fld: recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, SE, SE, SE

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: C p date: n.a.

Owner name: City Of Sioux City, Mw-335-6

Well plugged: 9/5/1996; Well type: < 18" dia. Other info:

222549.84 Xcoord: Ycoord: 4699822.5 Hlink: Not Reported IAPU30000013082 Site id:

West IA WELLS IAPU30000013204

1/2 - 1 Mile Higher

> 13204 Wellid: 27609 Mapid: ld src fld: recordno Datasrc: **PLUG**

Registered abandoned wells T. 88 N., R. 48 W., Sec. 36, NW, SW, SW Well type: Location:

Calc. +/- 140m. County: Woodbury Est loc ac: C p date: n.a.

Depth: Owner name: City Of Sioux City, Mw-1109-3

Well plugged: 9/26/1996; Well type: < 18" dia. Other info:

221125.33 Xcoord: Ycoord: 4699072 Hlink: Not Reported

Site id: IAPU30000013204

H37 West IA WELLS IAPU30000013227

1/2 - 1 Mile Higher

> 13227 Wellid: 27611 Mapid: PLUG ld src fld: Datasrc: recordno

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 36, NW, SW, SW

Woodbury Calc. +/- 140m. County: Est loc ac: C p date:

Depth: Owner name: City Of Sioux City, Mw-1109-5

Other info: Well plugged: 9/26/1996; Well type: < 18" dia.

Xcoord: 221121.33 Ycoord: 4699067 Not Reported Hlink: IAPU30000013227 Site id:

H38 West IA WELLS IAPU30000013215 1/2 - 1 Mile

Higher

13215 Wellid: 27607 Mapid: ld src fld: PLUG recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 36, NW, SW, SW

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: 30 C p date: n.a.

Owner name: City Of Sioux City, Mw-1109-1

Well plugged: 9/26/1996; Well type: < 18" dia. Other info:

221119.33 Xcoord: Ycoord: 4699072 Hlink: Not Reported IAPU30000013215 Site id:

West IA WELLS IAPU30000013224

1/2 - 1 Mile Higher

> 13224 Wellid: 27610 Mapid: ld src fld: recordno Datasrc: PLUG

Registered abandoned wells T. 88 N., R. 48 W., Sec. 36, NW, SW, SW Well type: Location:

Woodbury Calc. +/- 140m. County: Est loc ac: n.a.

Depth: C p date:

Owner name: City Of Sioux City, Mw-1109-4

Well plugged: 9/26/1996; Well type: < 18" dia. Other info:

221116.33 Xcoord: Ycoord: 4699060 Hlink: Not Reported

Site id: IAPU30000013224

H40 West IA WELLS IAPU30000013226

1/2 - 1 Mile Higher

> 13226 Wellid: 27608 Mapid: ld src fld: recordno PLUG Datasrc:

T. 88 N., R. 48 W., Sec. 36, NW, SW, SW Well type: Registered abandoned wells Location:

Woodbury Est loc ac: Calc. +/- 140m. County: C p date:

Depth: Owner name: City Of Sioux City, Mw-1109-2

Other info: Well plugged: 9/26/1996; Well type: < 18" dia.

Xcoord: 221117.33

Ycoord: 4699069 Not Reported Hlink: IAPU30000013226 Site id:

East IA WELLS IAPW30000094380 1/2 - 1 Mile

Lower

94380 Iwellid: 2215990 Objectid: 2159251 Wellnmbr: Pmtnmbr: 36027

Twp: 88 Rge: 47 Ew: W Sec: 31

NW, SW, NE, NW, SW Qqqqq:

Elev: 0

Elev acc: Not Reported

Well depth: 0 Br depth: 0 Wtr depth: 0

Latitude: 42.3941993713 Longitude: -96.3615951538 Dte done: 30-DEC-99 Cty num: 97 County: Woodbury Drlr name: Not Reported

Owner name:

Cnstr mthd: Not Reported Not Reported Fm rmk: Dewatering Well use: Permitted Status: Ht pmp no: 0

X Not Reported Permit: Plugging: Not Reported Not Reported Renovate: Test:

Xcoord: 223310.882949 Ycoord: 4699021.11545

0 Horiz acc: Not Reported Has litho: 0 Has prod: 0 Has wq:

Has constr. 0 Wnumber: 0

Hlink: https://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2159251&reportName=WellPrintout

IAPW30000094380 Site id:

142 North IA WELLS IAPU30000012959 1/2 - 1 Mile

Lower

Mapid: 12959 Wellid: 2151539 ld src fld: wellnmbr Datasrc: **PWTS**

T. 88 N., R. 48W., Sec. 25, SW, NW, SW, NE, NW Well type: Private well tracking system Location:

Woodbury County: Est loc ac: nom. +/- 25m. Depth: 0 C p date: Not Reported

Owner name: Not Reported Status: Permitted; Well use: Heat pump Other info:

222238.278676 Xcoord: Ycoord: 4700109.59675

Hlink: http://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2151539&reportName=WellPrintout

Site id: IAPU30000012959

IA WELLS IAPW3000064973

North 1/2 - 1 Mile Lower

2198435 Objectid: 64973 lwellid: Wellnmbr: 2151539 Pmtnmbr: 33644

Twp: 88 48 Rge: W Ew: Sec: 25

SW, NW, SW, NE, NW Qqqqq:

0 Elev:

Elev acc: Not Reported

Well depth: 0 Br depth: 0 Wtr depth: 0

42.4036026001 Latitude: -96.3751296997 Longitude: 30-DEC-99 Dte done: Cty num: County: Woodbury Jensen Well Co. Drlr name:

Owner name:

Not Reported Cnstr mthd: Fm rmk: Not Reported Heat pump Well use: Status: Permitted Ht pmp no:

1 Permit: X

Not Reported Plugging: Renovate: Not Reported Test: Not Reported

222238.278652 Xcoord: 4700109.59674 Ycoord:

Horiz acc: Not Reported Has litho: 0 Has prod: Has wq: 0

Has constr. 0 Wnumber: 0

Hlink: https://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2151539&reportName=WellPrintout

IAPW30000064973 Site id:

NNE IA WELLS IAPU30000012980

1/2 - 1 Mile Lower

> 12980 Wellid: 1762 Mapid: ld src fld: wnumber Datasrc: **GEOU**

Well type: IGS well database Location: T. 88N., R. 48W., Sec. 25, SE, NE

WOODBURY Est loc ac: Calc. +/- 280 m. County: Depth: 307 C p date: Not Reported

Owner name: SIOUX CITY AIR BASE

Other info: Bedrock depth: 113; Well type: Public access

Xcoord: 222487.5 Ycoord: 4700107.75

http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=1762 Hlink:

Site id: IAPU30000012980

SW IA WELLS IAPU30000013602

1/2 - 1 Mile Lower

1/2 - 1 Mile Lower

ld src fld:

Mapid: 13602 Wellid: 57429 ld src fld: wnumber Datasrc: **GEOU**

Well type: IGS well database Location: T. 88N., R. 48W., Sec. 36, SW, SW, SW

WOODBURY Est loc ac: Calc. +/- 140 m. County: C p date: 04/15/2003 Depth: 26

Owner name: **IOWA AIR GUARD** Other info: Well type: Monitor 221106.36 Xcoord: Ycoord: 4698270.4

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=57429

IAPU30000013602 Site id:

J46 SW IA WELLS IAPU30000013601

13601 Wellid: 57433 Mapid:

Datasrc: Well type: IGS well database Location: T. 88N., R. 48W., Sec. 36, SW, SW, SW

County: WOODBURY Est loc ac: Calc. +/- 140 m. 04/15/2003 Depth: 50 C p date:

Owner name: IOWA AIR GUARD Other info: Well type: Monitor Xcoord: 221106.36 Ycoord: 4698270.4

wnumber

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=57433

GEOU

Site id: IAPU30000013601

J47 SW IA WELLS IAPU30000013604

1/2 - 1 Mile Lower

> 13604 Wellid: 57438 Mapid: Datasrc: ld src fld: **GEOU** wnumber

Well type: IGS well database Location: T. 88N., R. 48W., Sec. 36, SW, SW, SW

WOODBURY Calc. +/- 140 m. County: Est loc ac: Depth: 51 C p date: 04/15/2003

Owner name: **IOWA AIR GUARD** Well type: Monitor Other info: 221106.36 Xcoord: Ycoord:

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=57438

IAPU30000013604 Site id:

J48 SW IA WELLS IAPU30000013603

1/2 - 1 Mile Lower

1/2 - 1 Mile

ld src fld:

Mapid: 13603 Wellid: 57440 **GEOU** ld src fld: wnumber Datasrc:

Well type: IGS well database Location: T. 88N., R. 48W., Sec. 36, SW, SW, SW

Calc. +/- 140 m. WOODBURY Est loc ac: County: Depth: 49 C p date: 04/15/2003

Owner name: **IOWA AIR GUARD** Other info: Well type: Monitor 221106.36 Xcoord: Ycoord: 4698270.4

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=57440

IAPU30000013603 Site id:

IA WELLS IAPU30000013600

Lower 13600 Wellid: 57437 Mapid:

Datasrc: IGS well database T. 88N., R. 48W., Sec. 36, SW, SW, SW Well type: Location:

Calc. +/- 140 m. WOODBURY County: Est loc ac: 04/15/2003 Depth: 51 C p date:

Owner name: IOWA AIR GUARD Other info: Well type: Monitor Xcoord: 221106.36 Ycoord: 4698270.4

wnumber

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=57437

GEOU

Site id: IAPU30000013600

J50 SW IA WELLS IAPU30000013595

1/2 - 1 Mile Lower

> Wellid: 57426 13595 Mapid: ld src fld: **GEOU** wnumber Datasrc:

Well type: IGS well database Location: T. 88N., R. 48W., Sec. 36, SW, SW, SW

WOODBURY Calc. +/- 140 m. County: Est loc ac: Depth: 35 C p date: 04/15/2003

Owner name: **IOWA AIR GUARD** Well type: Monitor Other info: 221106.36 Xcoord: Ycoord: 4698270.4

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=57426

IAPU30000013595 Site id:

IA WELLS IAPU30000013594 SW

1/2 - 1 Mile Lower

SW

Mapid: 13594 Wellid: 57436 **GEOU** ld src fld: wnumber Datasrc:

Well type: IGS well database Location: T. 88N., R. 48W., Sec. 36, SW, SW, SW

Calc. +/- 140 m. WOODBURY Est loc ac: County: Depth: 50 C p date: 04/15/2003

Owner name: **IOWA AIR GUARD** Other info: Well type: Monitor 221106.36 Xcoord: Ycoord: 4698270.4

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=57436

IAPU30000013594 Site id:

IAPU30000013599

1/2 - 1 Mile Lower

13599 Wellid: 57441 Mapid: ld src fld: wnumber Datasrc: **GEOU**

IGS well database T. 88N., R. 48W., Sec. 36, SW, SW, SW Well type: Location:

Calc. +/- 140 m. WOODBURY County: Est loc ac: 04/15/2003 Depth: 51 C p date:

Owner name: IOWA AIR GUARD Other info: Well type: Monitor Xcoord: 221106.36 Ycoord: 4698270.4

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=57441

IA WELLS

Site id: IAPU30000013599

J53 SW IA WELLS IAPU30000013597

1/2 - 1 Mile Lower

> 13597 Wellid: 57434 Mapid: ld src fld: **GEOU** wnumber Datasrc:

Well type: IGS well database Location: T. 88N., R. 48W., Sec. 36, SW, SW, SW

WOODBURY Calc. +/- 140 m. County: Est loc ac: Depth: 51 C p date: 04/15/2003

Owner name: **IOWA AIR GUARD** Well type: Monitor Other info: 221106.36 Xcoord: Ycoord:

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=57434

IAPU30000013597 Site id:

SW IA WELLS IAPU30000013616

1/2 - 1 Mile Lower

1/2 - 1 Mile

ld src fld:

Mapid: 13616 Wellid: 57431 ld src fld: wnumber Datasrc: **GEOU**

Well type: IGS well database Location: T. 88N., R. 48W., Sec. 36, SW, SW, SW

Calc. +/- 140 m. WOODBURY Est loc ac: County: Depth: 48 C p date: 04/15/2003

Owner name: **IOWA AIR GUARD** Other info: Well type: Monitor 221106.36 Xcoord: Ycoord: 4698270.4

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=57431

IAPU30000013616 Site id:

IAPU30000013615

Lower 13615 Wellid: 57424 Mapid:

Datasrc: IGS well database T. 88N., R. 48W., Sec. 36, SW, SW, SW Well type: Location:

Calc. +/- 140 m. WOODBURY County: Est loc ac: 04/15/2003 Depth: 35 C p date:

Owner name: **IOWA AIR GUARD** Other info: Well type: Monitor Xcoord: 221106.36 Ycoord: 4698270.4

wnumber

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=57424

IA WELLS

GEOU

Site id: IAPU30000013615

J56 SW IA WELLS IAPU30000013620

1/2 - 1 Mile

Lower

Wellid: 57425 13620 Mapid: Datasrc: ld src fld: **GEOU** wnumber

Well type: IGS well database Location: T. 88N., R. 48W., Sec. 36, SW, SW, SW

WOODBURY Calc. +/- 140 m. County: Est loc ac: Depth: 35 C p date: 04/15/2003

Owner name: **IOWA AIR GUARD** Well type: Monitor Other info: 221106.36 Xcoord: Ycoord: 4698270.4

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=57425

IAPU30000013620 Site id:

IA WELLS IAPU30000013618

SW 1/2 - 1 Mile

Lower

Mapid: 13618 Wellid: 57432 **GEOU** ld src fld: wnumber Datasrc:

Well type: IGS well database Location: T. 88N., R. 48W., Sec. 36, SW, SW, SW

Calc. +/- 140 m. WOODBURY Est loc ac: County: Depth: 51 C p date: 04/15/2003

Owner name: **IOWA AIR GUARD** Other info: Well type: Monitor 221106.36 Xcoord: Ycoord: 4698270.4

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=57432

IAPU30000013618 Site id:

IAPU30000013613

SW 1/2 - 1 Mile Lower

> 13613 Wellid: 57427 Mapid: ld src fld: wnumber Datasrc: **GEOU**

IGS well database T. 88N., R. 48W., Sec. 36, SW, SW, SW Well type: Location:

Calc. +/- 140 m. County: Woodbury Est loc ac: 04/15/2003 Depth: C p date:

Owner name: **IOWA AIR GUARD** Other info: Well type: Monitor Xcoord: 221106.36 Ycoord: 4698270.4

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=57427

IA WELLS

Site id: IAPU30000013613

J59 SW IA WELLS IAPU30000013608

1/2 - 1 Mile Lower

> Wellid: 13608 57439 Mapid: Datasrc: ld src fld: **GEOU** wnumber

Well type: IGS well database Location: T. 88N., R. 48W., Sec. 36, SW, SW, SW

WOODBURY Calc. +/- 140 m. County: Est loc ac: Depth: 49 C p date: 04/15/2003

Owner name: **IOWA AIR GUARD** Well type: Monitor Other info: 221106.36 Xcoord: Ycoord: 4698270.4

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=57439

IAPU30000013608 Site id:

J60 IA WELLS IAPU30000013606

SW 1/2 - 1 Mile Lower

1/2 - 1 Mile Lower

Mapid: 13606 Wellid: 57428 **GEOU** ld src fld: wnumber Datasrc:

IGS well database Well type: Location: T. 88N., R. 48W., Sec. 36, SW, SW, SW

Calc. +/- 140 m. WOODBURY Est loc ac: County: Depth: 26 C p date: 04/15/2003

Owner name: **IOWA AIR GUARD** Other info: Well type: Monitor 221106.36 Xcoord: Ycoord: 4698270.4

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=57428

IAPU30000013606 Site id:

IA WELLS IAPU30000013611

SW

13611 Wellid: 57430 Mapid: ld src fld: wnumber Datasrc: **GEOU**

IGS well database T. 88N., R. 48W., Sec. 36, SW, SW, SW Well type: Location:

Calc. +/- 140 m. WOODBURY County: Est loc ac: 04/15/2003 Depth: 26 C p date:

Owner name: IOWA AIR GUARD Other info: Well type: Monitor Xcoord: 221106.36 Ycoord: 4698270.4

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=57430

Site id: IAPU30000013611

J62 SW IA WELLS IAPU30000013609

1/2 - 1 Mile Lower

> 13609 Wellid: 57435 Mapid: Datasrc: ld src fld: **GEOU** wnumber

Well type: IGS well database Location: T. 88N., R. 48W., Sec. 36, SW, SW, SW

WOODBURY Calc. +/- 140 m. County: Est loc ac: Depth: 51 C p date: 04/15/2003

Owner name: **IOWA AIR GUARD** Other info: Well type: Monitor 221106.36 Xcoord: Ycoord: 4698270.4

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=57435

IAPU30000013609 Site id:

North **FED USGS** USGS40000318528 1/2 - 1 Mile

Lower

Org. Identifier: **USGS-IA**

USGS Iowa Water Science Center Formal name:

Monloc Identifier: USGS-422415096222401

Monloc name: 088N48W25DBAA 01574 1942Sioux City Air Base 2

Monloc type: Well

Monloc desc: Not Reported

Not Reported 10230001 Drainagearea value: Huc code: Not Reported Contrib drainagearea: Not Reported Drainagearea Units: Contrib drainagearea units: Not Reported Latitude: 42.4041602 Longitude: -96.3736402 Sourcemap scale: 24000 5 Horiz Acc measure units: Horiz Acc measure: seconds

Horiz Collection method: Interpolated from map

NAD83 1091.20 Horiz coord refsys: Vert measure val: Vert measure units: feet Vertacc measure val: 01

Vert accmeasure units: feet Vertcollection method: Altimeter

Vert coord refsys: NGVD29 US Countrycode:

Aquifername: Lower Cretaceous aquifers

Formation type: Dakota Group

Aquifer type: Not Reported

Construction date: 19420601 Welldepth: 250 Welldepth units: Wellholedepth: 250 ft

Wellholedepth units:

Ground-water levels, Number of Measurements: 1

Feet below Feet to Date Surface Sealevel

1942-07-30 18.50

Map ID Direction Distance

Elevation Database **EDR ID Number** K64 IA WELLS IAPR30000001113 1/2 - 1 Mile Lower Recordno: 1113 Twp: 88 47 N Rge: N S 31 Ew: W Sec: Qqqqq: Not Reported Q abc: Not Reported Checked: Not Reported Ownerfirst: KENNETH 1284 WARRIOR RD Ownerlast: LURCK Owneraddr: Ownercity: SERGEANT BLUFF Ownerst: IA 51054 Ownerphone: 7129433960 Ownerzip: 97 31 8847W County: Legal: Depth: 25 Dpth rel: Permit: Not Reported Sampldte: 29-JUN-94 Not Reported Lab: Lab no: Not Reported Anal dte: 01-JUL-94 Smplsrce: PRESSURE TANK Bact Itb: Not Reported Bact bgb: Not Reported 2.20000004768372 Bactr: Bact: Bctcolml: 0 Bact s u: S 0 No3r: Not Reported No3: No3 s u: Nitrogen: 0 Drl mthd: DRIVEN Drimth rel: K Not Reported Not Reported Case mat: Cs mt rel: Case diam: Csdia rel: Not Reported Year cons: 0 Yr rel: Agentfirst: Not Reported Agentlast: Not Reported Created: Not Reported Updated: TALT 11/28/94 13:38:42 Not Reported Flag: Utm x: 223436 Utm y: 4698676.5 Site id: IAPR30000001113

K65 East 1/2 - 1 Mile Lower

Mapid: 13607 Wellid: 1113
Id src fld: recordno Datasrc: TEST

Well type: Wells registered for testing Location: T. 88 N., R. 47 W., Sec. 31

County: Woodbury Est loc ac: Calc. +/- 1135m.

Depth: 25 C p date: unkn

Owner name: Lurck, Kenneth

Other info: Drilling method: Driven; Estimated well depth

 Xcoord:
 223425.44

 Ycoord:
 4698899.5

 Hlink:
 Not Reported

 Site id:
 IAPU30000013607

IA WELLS

IAPU30000013607

Map ID Direction Distance

 Elevation
 Database
 EDR ID Number

 L66
 IA WELLS
 IAPW30000087300

1/2 - 1 Mile Lower

 Objectid:
 87300
 Iwellid:
 2183590

 Wellnmbr:
 2144928
 Pmtnmbr:
 31474

 Twp:
 88

 Rge:
 48

 Ew:
 W

 Sec:
 35

Qqqqq: NE, NE, SW, NE, SE

Elev: 0

Elev acc: Not Reported

Well depth: 0
Br depth: 0
Wtr depth: 0

Latitude: 42.3962898254 Longitude: -96.3907318115 Dte done: 30-DEC-99

 Die done:
 30-DEC-99

 Cty num:
 97

 County:
 Woodbury

 Drlr name:
 * Unknown

Owner name:

Cnstr mthd: Not Reported Fm rmk: Not Reported Well use: Monitoring Status: Permitted Ht pmp no: 0

Permit: X Plugging: Not Reported Renovate: Not Reported Test: Not Reported

Xcoord: 220921.69545 Ycoord: 4699348.66913

Horiz acc: Not Reported Has litho: 0
Has prod: 0 Has wq: 0

Has constr: 0 Wnumber: 0

Hlink: https://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2144928&reportName=WellPrintout

Site id: IAPW30000087300

L67
WNW IA WELLS IAPU30000013086

1/2 - 1 Mile Lower

Mapid: 13086 Wellid: 2144928 Id src fld: wellnmbr Datasrc: PWTS

Well type: Private well tracking system Location: T. 88 N., R. 48W., Sec. 35, NE, NE, SW, NE, SE

County: Woodbury Est loc ac: nom. +/- 25m.
Depth: 0 C p date: Not Reported

Owner name: Not Reported

Other info: Status: Permitted; Well use: Monitoring

Xcoord: 220921.695492 Ycoord: 4699348.66918

Hlink: http://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2144928&reportName=WellPrintout

Site id: IAPU30000013086

L68 WNW IA WELLS IAPW30000060185

1/2 - 1 Mile Lower

> 60185 Iwellid: 2183591 Objectid: Wellnmbr: 2144929 Pmtnmbr: 31474

Twp: 88 48 Rge: Ew: W 35 Sec

NE, NE, NE, SW, SE Qqqqq:

Elev: 0

Elev acc: Not Reported

Well depth: 0 Br depth: 0 Wtr depth: 0

Latitude: 42.3971862793 Longitude: -96.3903274536 Dte done: 30-DEC-99 Cty num: 97 County: Woodbury Drlr name: * Unknown

Owner name:

Not Reported Cnstr mthd: Fm mk: Not Reported Well use: Monitoring Status: Permitted Ht pmp no: 0

Permit: X Plugging: Not Reported Renovate: Test:

Xcoord: 220958,956875 Ycoord: 4699446.89471

0 Not Reported Has litho: Horiz acc: Has prod: 0 Has wq: 0

0 Has constr. Wnumber:

Hlink: https://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2144929&reportName=WellPrintout

IAPW30000060185 Site id:

M69 South IA WELLS IAPU30000014037

1/2 - 1 Mile Lower

> Mapid: 14037 Wellid: 60094 ld src fld: wnumber Datasrc: **GEOU**

T. 87N., R. 48W., Sec. 1, NE, SW, NE IGS well database Well type: Location:

County: WOODBURY Est loc ac: Calc. +/- 140 m. Depth: 05/05/2005 100 C p date:

LEUENHAGEN, RANDY Owner name:

Other info: Well type: Other Xcoord: 222059.3 Ycoord: 4697622.3

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=60094

Not Reported

Not Reported

Site id: IAPU30000014037

1/2 - 1 Mile Lower

 Mapid:
 13071
 Wellid:
 2144929

 Id src fld:
 wellnmbr
 Datasrc:
 PWTS

Well type: Private well tracking system Location: T. 88 N., R. 48W., Sec. 35, NE, NE, NE, SW, SE

County: Woodbury Est loc ac: nom. +/- 25m.
Depth: 0 C p date: Not Reported

Owner name: Not Reported

Other info: Status: Permitted; Well use: Monitoring

Xcoord: 220958.956908 Ycoord: 4699446.89474

Hlink: http://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2144929&reportName=WellPrintout

Site id: IAPU30000013071

N71
South IA WELLS IAPU30000014071

1/2 - 1 Mile Lower

 Mapid:
 14071
 Wellid:
 2090247

 Id src fld:
 wellnmbr
 Datasrc:
 PWTS

Well type: Private well tracking system Location: T. 87 N., R. 48W., Sec. 1, NE, SW, NW, SE, NE

 County:
 Woodbury
 Est loc ac:
 nom. +/- 25m.

 Depth:
 120
 C p date:
 01/01/1978

Owner name: MCQUADE, DOUG

Other info: Status: Active; Well use: Household

Xcoord: 222231.486187 Ycoord: 4697595.78575

Hlink: http://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2090247&reportName=WellPrintout

Site id: IAPU30000014071

N72 South IA WELLS IAPW30000013313

South 1/2 - 1 Mile Lower

 Objectid:
 13313
 Iwellid:
 2096174

 Wellnmbr:
 2090247
 Pmtnmbr:
 Not Reported

Twp: 87
Rge: 48
Ew: W
Sec: 1

Qqqqq: NE, SW, NW, SE, NE

Elev: 0

Elev acc: Not Reported

Well depth: 120

Br depth: 0 Wtr depth: 0 Latitude: 42.381 -96.374 Longitude: Dte done: 01-JAN-78 Cty num: 97 County: Woodbury Drlr name: Not Reported MCQUADE, DOUG Owner name: Rotary Drill Cnstr mthd: Fm mk: Not Reported Well use: Household Status: Active

Permit: Not Reported Plugging: Not Reported

Renovate: Not Reported Test: X

Xcoord: 222231.486187 Ycoord: 4697595.78575

0

Horiz acc: Not Reported Has litho: 0

Has prod: 0 Has wq: 1
Has constr: 0

Hlink: https://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2090247&reportName=WellPrintout

Site id: IAPW30000013313

L73
WNW
IA WELLS
IAPW30000060184
1/2 - 1 Mile

Plugging:

Test:

Lower

Ht pmp no:

Wnumber:

 Objectid:
 60184
 Iwellid:
 2183589

 Wellnmbr:
 2144927
 Pmtnmbr:
 31474

 Twp:
 88

 Rge:
 48

 Ew:
 W

 Sec:
 35

Qqqqq: NE, NE, SW, NW, NE

Elev: 0

Elev acc: Not Reported

Well depth: 0
Br depth: 0
Wtr depth: 0

 Latitude:
 42.3964805603

 Longitude:
 -96.391204834

 Dte done:
 30-DEC-99

 Cty num:
 97

 County:
 Woodbury

 Drlr name:
 * Unknown

Owner name:

Cnstr mthd: Not Reported Fm rmk: Not Reported Well use: Monitoring Status: Permitted Ht pmp no: 0

Permit: X
Renovate: Not Reported

Xcoord: 220883.604944

Ycoord: 4699371.40669

Horiz acc: Not Reported Has litho: 0
Has prod: 0 Has wq: 0

Not Reported Not Reported

Has constr. 0 Wnumber: 0

Hlink: https://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2144927&reportName=WellPrintout

IAPW30000060184 Site id:

L74 WNW IA WELLS IAPU30000013088 1/2 - 1 Mile

Lower

13088 Wellid: 2144927 Mapid: ld src fld: wellnmbr Datasrc: **PWTS**

Well type: Private well tracking system Location: T. 88 N., R. 48W., Sec. 35, NE, NE, SW, NW, NE

County: Woodbury Est loc ac: nom. +/- 25m. Depth: 0 C p date: Not Reported

Owner name: Not Reported Other info: Status: Permitted; Well use: Monitoring

220883.604947 Xcoord: Ycoord: 4699371.40672

http://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2144927&reportName=WellPrintout Hlink:

Site id: IAPU30000013088

ENE IA WELLS IAUS20000002885

1/2 - 1 Mile Lower

> Maplabelna: City Of Sergeant Bluff-W28474

Legendtype: 39 Publicview: 0

Locid: 20000325420 Stfacid: 311974299 Progid: 97-12-006

Facname: City Of Sergeant Bluff

Opstatus: Drilled: No/Unknown Pistartdat: 28-FEB-12

W28474 Subname:

Subprogid: 18366 Subaltidnu: **Dewatering Wells**

Wellname: **Dewatering Wells** Wellstatus: Not Reported Totaldepth:

30-DEC-99 Aquifertyp: Unconsolidated - Drift, Alluv, Bur Drilldate:

Aquiferran: Primary Countyname: Woodbury Fo: 3 Accuracy: 20

Colmthtxt: INTERPOLATION-PHOTO Refpnttxt: CENTER OF FACILITY

Verifytxt: Not Reported Collectby: **JNeleigh**

Coldate: 28-FEB-12 Loccomment:

First point clicked in WUSE map applet 54 Congress: 5 Sthouse:

Stsenate: 27 102300040302

http://programs.iowadnr.gov/wateruse/ Hyperlink:

42.39744 Lat: -96.3604 Lon: Xcoord: 223423 Ycoord: 4699378

Site id: IAUS20000002885

Map ID Direction Distance

Elevation Database EDR ID Number 076

ENE 1/2 - 1 Mile IA WELLS IAPU30000013415

IAPW30000033866

IA WELLS

Lower

 Mapid:
 13415
 Wellid:
 W28474

 Id src fld:
 subname
 Datasrc:
 WTRU

Well type: Water Use Permit Wells Location: T88N, R47W, Sec. 31, NW, NE, SE

County: Woodbury Est loc ac: +/-20
Depth: unkn C p date: Not Reported

Owner name: City Of Sergeant Bluff

Other info: Water Use Permit 97-12-006; Primary use: Dewatering

Xcoord: 223423 Ycoord: 4699378

Hlink: https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=311974299

Site id: IAPU30000013415

M77 South 1/2 - 1 Mile Lower

Well depth:

 Objectid:
 33866
 Iwellid:
 2121797

 Wellnmbr:
 2108564
 Pmtnmbr:
 19331

 Wellnmbr:
 21085

 Twp:
 87

 Rge:
 48

 Ew:
 W

 Sec:
 1

Qqqqq: NE, SE, NE, SW, SW

0

Elev: 0

Elev acc: Not Reported

Br depth: 0 Wtr depth: 0 Latitude: 42.3804 -96.3755 Longitude: Dte done: 30-DEC-99 Cty num: 97 Woodbury County: Drlr name: Not Reported

Owner name: LEUENHAGEN, RANDY

Cnstr mthd: Not Reported Fm rmk: Not Reported Well use: Heat pump Status: Retired Ht pmp no: 1

Permit: X Plugging: Not Reported Renovate: Not Reported Test: Not Reported

Xcoord: 222105.334618 Ycoord: 4697534.06235

Horiz acc: Not Reported Has litho: 0
Has prod: 0 Has wq: 0

Has constr: 0 Wnumber: 60094

Hlink: https://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2108564&reportName=WellPrintout

Site id: IAPW30000033866

M78
South IA WELLS IAPU30000014099

1/2 - 1 Mile Lower

Mapid: 14099 Wellid: 2108564
Id src fld: wellnmbr Datasrc: PWTS

Well type: Private well tracking system Location: T. 87 N., R. 48W., Sec. 1, NE, SE, NE, SW, SW

County: Woodbury Est loc ac: nom. +/- 25m.

Depth: 0 C p date: Not Reported

Owner name: LEUENHAGEN, RANDY

Other info: Status: Retired; Well use: Heat pump

Xcoord: 222105.334618 Ycoord: 4697534.06235

Hlink: http://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2108564&reportName=WellPrintout

Site id: IAPU30000014099

P79
South IA WELLS IAPU30000014093

1/2 - 1 Mile Lower

Mapid: 14093 Wellid: 3
Id src fld: recordno Datasrc: TEST

Well type: Wells registered for testing Location: T. 87 N., R. 48 W., Sec. 1, NE, SW

 County:
 Woodbury
 Est loc ac:
 Calc. +/- 285m.

 Depth:
 100
 C p date:
 1979

Owner name: Const. Co., Elk Hom

Other info: Drilling method: Drilled; Known well depth

 Xcoord:
 221955.33

 Ycoord:
 4697526.5

 Hlink:
 Not Reported

 Site id:
 IAPU30000014093

P80 South IA WELLS IAPR30000000003

1/2 - 1 Mile Lower

> 87 Twp: Recordno: 3 N 48 N S Rge: Ew: W Sec: 1 Qqqqq: NE SW Q abc: AC

Checked: Not Reported Ownerfirst: ELK HORN
Ownerlast: CONST. CO. Owneraddr: 2243 ANDREW AVE.

Ownerlast: CONST. CO. Owneraddr: 22-Ownercity: SGT. BLUFF Ownerst: IA

 Ownerzip:
 51054
 Ownerphone:
 7129434430

 County:
 97
 Legal:
 SWNE 1 8748W

Depth: 100 Dpth rel: K

Permit: Not Reported Sampldte: 26-JUL-94

Lab: Not Reported
Lab no: Not Reported

Anal dte: 28-JUL-94 Smplsrce: SINK FAUCET
Bact ltb: Not Reported Bact bgb: Not Reported
Bactr: < Bact: 2.20000004768372
Bctcolml: 0 Bact s u: S
No3r: < No3: .10000001490116

No3r: < No3: S No3 s u: Nitrogen: 0 Drl mthd: DRILLED Drimth rel: K Case mat: Not Reported Cs mt rel: U Case diam: Csdia rel: U

Year cons: 1979 Yr rel: K
Agentfirst: D.V. Agentlast: WEAKLEY

Created: Not Reported Updated: RTALCOT 10/27/94 09:59:38

Utm x: 221972.88 Utm y: 4697309.69 Site id: IAPR30000000003

81 SE IA WELLS IAPW3000067684

1/2 - 1 Mile Lower

 Objectid:
 67684
 lwellid:
 2206723

 Wellnmbr:
 2155163
 Pmtnmbr:
 34746

Twp: 88
Rge: 47
Ew: W
Sec: 31

Qqqqq: SE, SW, SW, NW, NW

Elev: 0

Elev acc: Not Reported

Well depth: 0
Br depth: 0
Wtr depth: 0

 Latitude:
 42.3854064941

 Longitude:
 -96.3616867065

 Dte done:
 30-DEC-99

 Cty num:
 97

 County:
 Woodbury

 Drlr name:
 Not Reported

Owner name:

Cnstr mthd: Not Reported Fm rmk: Not Reported Well use: Dewatering Status: Permitted Ht pmp no: 0

Permit: X Plugging: Not Reported Renovate: Not Reported Test: Not Reported

Xcoord: 223264.676744 Ycoord: 4698044.92936

Horiz acc: Not Reported Has litho: 0
Has prod: 0 Has wq: 0

Has constr. 0 Wnumber: 0

Hlink: https://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2155163&reportName=WellPrintout

IAPW30000067684 Site id:

82 North IA WELLS IAPU30000012867

1/2 - 1 Mile Lower

> 12867 Wellid: 27596 Mapid: ld src fld: recordno Datasrc: **PLUG**

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, SE, NE, NW

Woodbury Calc. +/- 140m. County: Est loc ac:

Depth: 32 C p date: n.a.

Owner name: City Of Sioux City, Amw-10

Other info: Well plugged: 9/13/1996; Well type: < 18" dia.

222374.34 Xcoord: Ycoord: 4700426 Hlink: Not Reported Site id: IAPU30000012867

North IA WELLS IAPU30000012851 1/2 - 1 Mile

Lower

Mapid: 12851 Wellid: 1574 ld src fld: Wnumber Datasrc: **PUB**

Well type: Public wells Location: T. 88N., R. 48W., Sec. 25

Est loc ac: Meas. +/- 115' Woodbury County: 250 C p date: 06/01/1942 Depth:

Owner name: Sioux City, City Of

Other info: Local name: Sioux City Airport #2; Status: Not Used

222247.93 Xcoord:

Ycoord: 4700455.51 Hlink:

http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=1574

IAPU30000012851 Site id:

Q84 NNE IA WELLS IAPU30000012888

1/2 - 1 Mile Lower

> 12888 Wellid: 27584 Mapid: ld src fld: PLUG recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, SE, NE, NE C p date:

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: 31 Owner name: City Of Sioux City, Mw-642-1

Well plugged: 8/29/1996; Well type: < 18" dia. Other info:

Xcoord: 222573.94 4700412.5 Ycoord: Hlink: Not Reported n.a.

Site id: IAPU30000012888

Q85 NNE IA WELLS IAPU30000012881

1/2 - 1 Mile Lower

> 12881 Wellid: 27585 Mapid: PLUG ld src fld: Datasrc: recordno

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, SE, NE, NE

Woodbury Calc. +/- 140m. County: Est loc ac: C p date:

Depth:

Owner name: City Of Sioux City, Mw-642-2

Other info: Well plugged: 8/29/1996; Well type: < 18" dia.

222567.94 Xcoord: Ycoord: 4700414.5 Not Reported Hlink: IAPU30000012881 Site id:

Q86 NNE IA WELLS IAPU30000012904 1/2 - 1 Mile

Lower

12904 Wellid: 27586 Mapid: **PLUG** ld src fld: recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, SE, NE, NE

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: 30 C p date: n.a.

Owner name: City Of Sioux City, Mw-642-3

Well plugged: 8/29/1996; Well type: < 18" dia. Other info:

222583.94 Xcoord: Ycoord: 4700411.5 Hlink: Not Reported IAPU30000012904 Site id:

NNE IA WELLS IAPU30000012891

1/2 - 1 Mile Lower

> 12891 Wellid: 27587 Mapid: ld src fld: recordno Datasrc: PLUG

Registered abandoned wells T. 88 N., R. 48 W., Sec. 25, SE, NE, NE Well type: Location:

Woodbury Calc. +/- 140m. County: Est loc ac: C p date: n.a.

Depth: Owner name: City Of Sioux City, Mw-642-4

Well plugged: 8/29/1996; Well type: < 18" dia. Other info:

222569.94 Xcoord: Ycoord: 4700416.5 Hlink: Not Reported

Site id: IAPU30000012891

Q88 NNE IA WELLS IAPU30000012908

1/2 - 1 Mile Lower

> 12908 Wellid: 27553 Mapid: PLUG ld src fld: Datasrc: recordno

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, SE, NE, NE

Woodbury Calc. +/- 140m. County: Est loc ac: C p date:

Depth: Owner name:

City Of Sioux City, Mw-509-3 Other info:

Well plugged: 9/16/1996; Well type: < 18" dia.

222580.94 Xcoord: Ycoord: 4700413.5 Hlink: Not Reported IAPU30000012908 Site id:

Q89 NNE IA WELLS IAPU30000012906 1/2 - 1 Mile

Lower

12906 Wellid: 27551 Mapid: **PLUG** ld src fld: recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, SE, NE, NE

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: 33 C p date: n.a.

Owner name: City Of Sioux City, Mw-509-1

Well plugged: 8/30/1996; Well type: < 18" dia. Other info:

222574.94 Xcoord: Ycoord: 4700419.5 Hlink: Not Reported IAPU30000012906 Site id:

NNE IA WELLS IAPU30000012901

1/2 - 1 Mile Lower

> 12901 Wellid: 27552 Mapid: ld src fld: recordno Datasrc: PLUG

Registered abandoned wells T. 88 N., R. 48 W., Sec. 25, SE, NE, NE Well type: Location:

Calc. +/- 140m. County: Woodbury Est loc ac: C p date: n.a.

Depth: Owner name: City Of Sioux City, Mw-509-2

Well plugged: 8/30/1996; Well type: < 18" dia. Other info:

222580.94 Xcoord: Ycoord: 4700418.5 Hlink: Not Reported

Site id: IAPU30000012901

91 IA WELLS IAPW30000098224

1/2 - 1 Mile Lower

 Objectid:
 98224
 Iwellid:
 2232866

 Wellnmbr:
 2167154
 Pmtnmbr:
 Not Reported

Twp: 88
Rge: 47
Ew: W
Sec: 30

Qqqqq: SW, SE, NW, SE, SE

Elev: 0

Elev acc: Not Reported

Well depth: 20 0 Br depth: Wtr depth: 0 Latitude: 42.40047 Longitude: -96.35962 Dte done: 01-JAN-11 Cty num: 97 Woodbury County: Drlr name: Not Reported Owner name: Not Reported Rotary Drill Cnstr mthd: Fm mk: Not Reported Well use: Monitoring

Ht pmp no: 0

Permit: Not Reported Plugging: X

Renovate: Not Reported Test: Not Reported

Xcoord: 223501.037079 Ycoord: 4699711.05744

Horiz acc: Not Reported Has litho: 0
Has prod: 0 Has wq: 0

Has constr: 0 Wnumber: 0

Hlink: https://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2167154&reportName=WellPrintout

Site id: IAPW30000098224

92 NNE FED USGS USGS40000318534

1/2 - 1 Mile Higher

Status:

Org. Identifier: USGS-IA

Formal name: USGS Iowa Water Science Center

Plugged

Monloc Identifier: USGS-422420096220001

Monloc name: 088N47W30DBCA 1981Sergeant Bluff 3

Monloc type: Well
Monloc desc: Not Reported

Huc code:10230001Drainagearea value:Not ReportedDrainagearea Units:Not ReportedContrib drainagearea:Not ReportedContrib drainagearea units:Not ReportedLatitude:42.405549Longitude:-96.3669733Sourcemap scale:24000

Horiz Acc measure: 1 Horiz Acc measure units: seconds

Horiz Collection method: Interpolated from map

Horiz coord refsys: NAD83 Vert measure val: 1094
Vert measure units: feet Vertacc measure val: 5

Vert accmeasure units: feet

Vertcollection method: Interpolated from topographic map

Vert coord refsys: NGVD29 Countrycode:

Aquifername: Not Reported
Formation type: Cretaceous System
Aquifer type: Not Reported

Construction date: 1981 Welldepth: 245

Welldepth units: ft Wellholedepth: Not Reported

Wellholedepth units: Not Reported

Ground-water levels, Number of Measurements: 0

R93 SE IA WELLS IAPU30000014148

US

1/2 - 1 Mile Lower

Mapid: 14148 Wellid: 61584 Id src fld: recordno Datasrc: TEST

Well type: Wells registered for testing Location: T. 87 N., R. 47 W., Sec. 6, NW, NE, SE

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: 100 C p date: 1991

Owner name: Blenderman, Bob

Other info: Drilling method: Unknown; Known well depth

 Xcoord:
 223286.33

 Ycoord:
 4697782

 Hlink:
 Not Reported

 Site id:
 IAPU30000014148

R94 SE IA WELLS IAPR30000061584

1/2 - 1 Mile Lower

> Recordno: 61584 Twp: 87 Ns: N Rge: 47 W 6 E w: Sec: NW NE SE BAD Q abc: Qqqqq: toehler 02/11/00 11:23:12 Checked: Ownerfirst: **BOB**

Ownerlast: BLENDERMAN Owneraddr: 7415 OLD LANKEPORT RD.

Ownercity: SERGEANT BLUFF Ownerst: IA

 Ownerzip:
 51054
 Ownerphone:
 7129432678

 County:
 97
 Legal:
 SENENW 6 8747W

Depth: 100 Dpth rel: K

Permit: Not Reported Sampldte: 05-NOV-99
Lab: IOWA TESTING LABORATORIES, INC.

Lab: IOWA Lab no: 024

Anal dte: 30-DEC-99 Smplsrce: KITCHEN FAUCET Bact ltb: Not Reported Bact bgb: Not Reported

 Bactr:
 Not Reported
 Bact:
 0

 Bctcolml:
 0
 Bact s u:
 S

 No3r:
 Not Reported
 No3:
 0

 No3 s u:
 S
 Nitrogen:
 .20000002980232

 Drl mthd:
 UNKNOWN
 Drlmth rel:
 Not Reported

 Case mat:
 PLASTIC
 Cs mt rel:
 Not Reported

 Case diam:
 0
 Csdia rel:
 U

 Year cons:
 1991
 Yr rel:
 E

Agentfirst: Not Reported Agentlast: Not Reported

Created: kwillet 02/08/00 15:51:03 Updated: toehler 02/11/00 11:23:12

Flag: NYNNYYNNNYYNNNNNNNN

 Utm x:
 223295.94

 Utm y:
 4697559.75

 Site id:
 IAPR30000061584

\$95 South IA WELLS IAUS20000004879 1 - 2 Miles

Lower

Maplabelna: Southbridge Sanitary Sewer Construction-W28585

Legendtype: 39 Publicview: 0

Locid: 20000330612 Stfacid: 312038618 Progid: 97-12-073

Facname: Southbridge Sanitary Sewer Construction

Opstatus: Drilled: No/Unknown Pistartdat: 01-OCT-12

Subname: W28585

Subprogid: 18754 Subaltidnu: 19 Dewatering Wells

Wellname: 19 Dewatering Wells Wellstatus: Not Reported

Totaldepth: 0

Drilldate: 30-DEC-99 Aquifertyp: Unconsolidated - Drift, Alluv, Bur

Aquiferran: Primary Countyname: Woodbury Fo: 3 Accuracy: 20

Colmthtxt: INTERPOLATION-PHOTO Refpnttxt: CENTER OF FACILITY

Verifytxt: Not Reported Collectby: JNeleigh

Coldate: 01-OCT-12

Loccomment: First point clicked in WUSE map applet Congress: 5 Sthouse:

Stsenate: 28 Huc: 1023000108

Hyperlink: http://programs.iowadnr.gov/wateruse/

Lat: 42.37845 Lon: -96.37331 Xcoord: 222277 Ycoord: 4697311

Site id: IAUS20000004879

\$96 South IA WELLS IAPU30000014255 1 - 2 Miles

Lower

Mapid: 14255 Wellid: W28585 Id src fld: subname Datasrc: WTRU

Well type: Water Use Permit Wells Location: T87N, R48W, Sec. 1, NE, SE, SW

County: Woodbury Est loc ac: +/-20
Depth: unkn C p date: Not Reported

Owner name: Southbridge Sanitary Sewer Construction

Other info: Water Use Permit 97-12-073; Primary use: Dewatering

Xcoord: 222277 Ycoord: 4697311

Hlink: https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=312038618

55

Site id: IAPU30000014255

T97
SSE

IA WELLS
IAPU30000014257

1 - 2 Miles Lower

 Mapid:
 14257
 Wellid:
 71956

 Id src fld:
 recordno
 Datasrc:
 TEST

Well type: Wells registered for testing Location: T. 87 N., R. 47 W., Sec. 6, NW, SW, SW

 County:
 Woodbury
 Est loc ac:
 Calc. +/- 140m.

 Depth:
 93
 C p date:
 2000

Owner name: Williams, Linda

Other info: Drilling method: Drilled; Known well depth

 Xcoord:
 222664.63

 Ycoord:
 4697379

 Hlink:
 Not Reported

 Site id:
 IAPU30000014257

T98
SSE
IA WELLS
IAPR30000071956

1 - 2 Miles Lower

> 87 Recordno: 71956 Twp: 47 Ns: N Rge: Ew: W Sec: 6 NW SW SW Qqqqq: Q abc: BCC Checked: iswan 08/07/00 15:21:57 Ownerfirst: LINDA

Ownerlast: WILLIAMS Owneraddr: 2294 ALICIA AVE.

Ownercity: SERGEANT BLUFF Ownerst: IA

 Ownerzip:
 51054
 Ownerphone:
 7129434735

 County:
 97
 Legal:
 SWSWNW 6 8747W

Depth: 93 Dpth rel: K

Permit: Not Reported Sampldte: 26-JUN-00

Lab: IA024 Lab no: Not Reported

Anal dte: 30-DEC-99 Smplsrce: KITCHEN FAUCET
Bact ltb: Not Reported Bact bgb: Not Reported

Bactr: Not Reported Bact: 0
Bctcolml: 0 Bact s u: U

 Bact s u.
 0
 Bact s u.
 0

 No3r:
 Not Reported
 No3:
 0

 No3 s u:
 S
 Nitrogen:
 .1

.100000001490116 Drl mthd: DRILLED Drimth rel: Not Reported **PLASTIC** Cs mt rel: Not Reported Case mat: Csdia rel: Case diam: 0 U 2000 Year cons: Yr rel:

Agentfirst: Not Reported Agentlast: Not Reported

Created: kmckine 08/03/00 09:07:11 Updated: jswan 08/07/00 15:21:57

Utm y: 4697160

Site id: IAPR30000071956

Map ID Direction Distance

 Elevation
 Database
 EDR ID Number

 U99
 IA WELLS
 IAPU30000014157

1 - 2 Miles Lower

 Mapid:
 14157
 Wellid:
 15440

 Id src fld:
 recordno
 Datasrc:
 TEST

Well type: Wells registered for testing Location: T. 87 N., R. 48 W., Sec. 1
County: Woodbury Est loc ac: Calc. +/- 1135m.

Depth: 24 C p date: unkn

Owner name: Nelson, Grace M.
Other info: Drilling method: Point;

 Xcoord:
 221749.91

 Ycoord:
 4697333

 Hlink:
 Not Reported

 Site id:
 IAPU30000014157

U100 SSW 1 - 2 Miles Lower

Drl mthd:

 Recordno:
 15440
 Twp:
 87

 N s:
 N
 Rge:
 48

 E w:
 W
 Sec:
 1

 Qqqqq:
 Not Reported
 Q abc:
 Not Reported

 Checked:
 libey 10/11/96 10:52:17
 Ownerfirst:
 GRACE M.

 Ownerlast:
 NELSON
 Owneraddr:
 2290 ALICIA AVE.

Ownercity: SGT. BLUFF Ownerst: IA 51054 9435617 Ownerzip: Ownerphone: 97 18748W County: Legal: Depth: 24 Dpth rel: Not Reported Permit: Not Reported Sampldte: 17-NOV-94

Lab: SIOUXLAND DISTRICT HEALTH DEPARTMENT
Lab no: Not Reported

Anal dte: 21-NOV-94 Smplsrce: FAUCET
Bact ltb: Not Reported Bact bgb: Not Reported
Bactr: Not Reported Bact: 0

Case mat: Not Reported Cs mt rel: Not Reported 0 Csdia rel: Not Reported Case diam: Year cons: 0 Yr rel: Not Reported D.V. Agentlast: Agentfirst: WEAKLY libey 10/15/96 11:06:06

Drimth rel:

POINT

 Utm x:
 221767.5

 Utm y:
 4697109.75

 Site id:
 IAPR30000015440

IAPR30000015440

IA WELLS

Not Reported

Map ID Direction Distance

 Elevation
 Database
 EDR ID Number

 R101
 IA WELLS
 IAPW30000096312

1 - 2 Miles Lower

 Objectid:
 96312
 Iwellid:
 2225027

 Wellnmbr:
 2163643
 Pmtnmbr:
 37743

 Twp:
 87

 Rge:
 47

 Ew:
 W

 Sec:
 6

Qqqqq: NW, NE, NE, SW, NW

Elev: 0

Elev acc: Not Reported

Well depth: 0
Br depth: 0
Wtr depth: 0

Latitude: 42.3825683594 Longitude: -96.3611984253 Dte done: 30-DEC-99

Cty num: 97
County: Woodbury
Drlr name: Not Reported

Owner name:

Cnstr mthd: Not Reported Fm rmk: Not Reported Well use: Dewatering Status: Permitted Ht pmp no: 0

Permit: X Plugging: Not Reported Renovate: Not Reported Test: Not Reported

Xcoord: 223292.398065 Ycoord: 4697728.15151

Horiz acc: Not Reported Has litho: 0
Has prod: 0 Has wq: 0

Has constr. 0 Wnumber: 0

Hlink: https://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2163643&reportName=WellPrintout

Site id: IAPW30000096312

V102 South 1 - 2 Miles Lower

 Mapid:
 14247
 Wellid:
 22214

 Id src fld:
 recordno
 Datasrc:
 PVTP

Well type: Permitted private wells Location: T. 87 N., R. 48 W., Sec. 1, SE, NW, NE

 County:
 Woodbury
 Est loc ac:
 Calc. +/- 140m.

 Depth:
 100
 C p date:
 3/17/1998

Owner name: Twenty-seven Flags Golf Other info: Primary use: commercial

 Xcoord:
 222034.5

 Ycoord:
 4697218.5

 Hlink:
 Not Reported

IA WELLS

IAPU30000014247

Site id: IAPU30000014247

W103 ENE 1 - 2 Miles IA WELLS IAPU30000013318

Lower

13318 Wellid: 61321 Mapid: TEST ld src fld: recordno Datasrc:

Well type: Wells registered for testing Location: T. 88 N., R. 47 W., Sec. 31, NE, NW, NE

Calc. +/- 140m. County: Woodbury Est loc ac:

Depth: 88 C p date: 1979

Owner name: Burns, Jim

Drilling method: Drilled; Estimated well depth Other info:

Xcoord: 223731.53 Ycoord: 4699590 Hlink: Not Reported IAPU30000013318 Site id:

V104 IA WELLS IAPU30000014254 South

1 - 2 Miles Lower

> 14254 Wellid: Mapid: 45496 **GEOU** ld src fld: wnumber Datasrc:

Well type: IGS well database Location: T. 87N., R. 48W., Sec. 1, SE, NW, NE

Calc. +/- 140 m. WOODBURY Est loc ac: County: Depth: 100 C p date: 04/13/1998

Owner name: 27 FLAGS GOLF COURSE

Other info: Well type: Private 222040.54 Xcoord: Ycoord: 4697209.79

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=45496

IAPU30000014254 Site id:

W105 IA WELLS IAPR30000061321

ENE 1 - 2 Miles Lower

> Recordno: 61321 88 Twp: Ns: N Rge: 47 Ew: W 31 Sec: NE NW NE ABA Qqqqq: Q abc: Checked: cpartai 02/04/00 13:33:27 Ownerfirst: JIM

Ownerlast: **BURNS** Owneraddr: 3631 VIRGINIAN

Ownercity: SIOUX CITY Ownerst: IA

7122772683 Ownerzip: 51104 Ownerphone: County: 97 Legal: **NENWNE31 8847W**

88 Depth: Dpth rel: E

Permit: Not Reported Sampldte: 27-DEC-99

Lab: IOWA TESTING LABORATORIES, INC.

Lab no: IA024

Anal dte: 30-DEC-99 Smplsrce: KITCHEN FAUCET
Bact ltb: Not Reported Bact bgb: Not Reported
Bactr: Not Reported Bact: 0

 Bctcolml:
 0
 Bact s u:
 S

 No3r:
 <</th>
 No3:
 0

.100000001490116 S Nitrogen: No3 s u: DRILLED Drl mthd: Not Reported Drimth rel: Case mat: PLASTIC Cs mt rel: Not Reported Csdia rel: Case diam: 5 K

Year cons: 1979 Yr rel: K

Agentfirst: Not Reported Agentlast: Not Reported

Created: nreimer 02/04/00 10:33:59 Updated: cpartai 02/04/00 13:33:27

Utm x: 223756.13 Utm y: 4699380.63 Site id: IAPR30000061321

106 North IA WELLS IAPU30000012802

1 - 2 Miles Lower

 Mapid:
 12802
 Wellid:
 27595

 Id src fld:
 recordno
 Datasrc:
 PLUG

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, SW

County: Woodbury Est loc ac: Calc, +/- 140m.

Depth: 32 C p date: n.a.

Owner name: City Of Sioux City, Amw-9

Other info: Well plugged: 9/13/1996; Well type: < 18" dia.

 Xcoord:
 222372.73

 Ycoord:
 4700632

 Hlink:
 Not Reported

 Site id:
 IAPU30000012802

107 South IA WELLS IAPU30000014250

1 - 2 Miles Lower

Mapid: 14250 Wellid: 2585235 Id src fld: tinwsf_is_number Datasrc: SDWI

Well type: SDWIS well Location: T87N, R48W, Sec. 1, SE, NW, NW

County: Woodbury Est loc ac: +/- 15 m.
Depth: unkn C p date: Not Reported

Owner name: Twenty-Seven Flags Golf Course

Other info: Well #3 (1998); PWSID: 9774201; Status: Inactive

Xcoord: 221924 Ycoord: 4697195

Hlink: https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=310343721

Site id: IAPU30000014250

108 NNE IA WELLS IAPU30000012830

1 - 2 Miles Higher

 Mapid:
 12830
 Wellid:
 17718

 Id src fld:
 recordno
 Datasrc:
 PVTP

Well type: Permitted private wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, SE County: Woodbury Est loc ac: Calc. +/- 140m.

unkn

County: Woodbury Est loc ac: Depth: 50 C p date:

IAPU30000012830

Owner name: Unkn
Other info: Primary use: Monitoring/observation

 Xcoord:
 222582.34

 Ycoord:
 4700621

 Hlink:
 Not Reported

W109
ENE
IA WELLS
IAPU30000013387
1 - 2 Miles

Lower

Site id:

Mapid: 13387 Wellid: 12790 Id src fld: wnumber Datasrc: GEOU

Well type: IGS well database Location: T. 88N., R. 47W., Sec. 31, SE, SW, SE, SE

 County:
 WOODBURY
 Est loc ac:
 Calc. +/- 230 ft

 Depth:
 250
 C p date:
 04/26/1961

Owner name: SERGEANT BLUFF, CITY OF

Other info: Bedrock depth: 112; Well type: Test (water only)

Xcoord: 223810.81 Ycoord: 4699530.75

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=12790

Site id: IAPU30000013387

X110 SSE IA WELLS IAPW30000064263

SSE 1 - 2 Miles Lower

 Objectid:
 64263
 Iwellid:
 2196259

 Wellnmbr:
 2150547
 Pmtnmbr:
 33274

Twp: 87
Rge: 47
Ew: W
Sec: 6

Qqqqq: NW, SE, SE, SE, NE

Elev: 0

Elev acc: Not Reported

Well depth: 0

Br depth: 0 Wtr depth: 0

 Latitude:
 42.3777160645

 Longitude:
 -96.3685531616

 Dte done:
 30-DEC-99

 Cty num:
 97

 County:
 Woodbury

 Drlr name:
 Not Reported

Owner name:

Cnstr mthd: Not Reported Fm rmk: Not Reported Well use: Dewatering Status: Permitted Ht pmp no: 0

Permit: X Plugging: Not Reported Renovate: Not Reported Test: Not Reported

Xcoord: 222665.482322 Ycoord: 4697213.28412

Horiz acc: Not Reported Has litho: 0
Has prod: 0 Has wq: 0

Has constr: 0
Wnumber: 0

Hlink: https://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2150547&reportName=WellPrintout

Site id: IAPW30000064263

X111
SSE
IA WELLS
IAPU30000014331
1 - 2 Miles

1 - 2 Miles Lower

Mapid: 14331 Wellid: 2150547 Id src fld: wellnmbr Datasrc: PWTS

Well type: Private well tracking system Location: T. 87 N., R. 47W., Sec. 6, NW, SE, SE, SE, NE

County: Woodbury Est loc ac: nom. +/- 25m.
Depth: 0 C p date: Not Reported

Owner name: Not Reported

Other info: Status: Permitted; Well use: Dewatering

Xcoord: 222665.482356 Ycoord: 4697213.28417

Hlink: http://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2150547&reportName=WellPrintout

Site id: IAPU30000014331

V112 South IA WELLS IAPU30000014279

1 - 2 Miles Lower

Mapid: 14279 Wellid: 75540 Id src fld: wnumber Datasrc: GEOU

Well type: IGS well database Location: T. 87N., R. 48W., Sec. 1, SE, NW, NE

 County:
 Woodbury
 Est loc ac:
 Calc. +/- 140 m.

 Depth:
 218
 C p date:
 10/08/2012

Owner name: MIDAMERICAN ENERGY UNIT 3
Other info: Bedrock depth: 133; Well type: Monitor

Xcoord: 221992.787769 Ycoord: 4697123.28023

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=75540

Site id: IAPU30000014279

X113 SSE 1 - 2 Miles IA WELLS IAPR30000069719

Lower

69719 87 Recordno: Twp: 47 Ns: N Rge: Ew: W Sec: 6 SW NW NW Q abc: CBB Qqqqq: jswan 07/06/00 12:06:56 Checked: Ownerfirst: LINDA

Ownerlast: WILLIAMS Owneraddr: 2294 ALICIA AVE Ownercity: SERGEANT BLUFF Ownerst:

7129434735 Ownerzip: 51054 Ownerphone: County: 97 Legal: **NWNWSW 6 8747W**

Depth: 100 Dpth rel:

26-APR-00 Permit: Not Reported Sampldte: Lab: IA024

Lab no: Not Reported Anal dte: 30-DEC-99 Smplsrce: BATHROOM SINK Bact Itb: Not Reported Bact bgb: Not Reported

Bactr: Not Reported Bact: 0 S Bctcolml: Bact s u: No3r: Not Reported No3:

.200000002980232 No3 s u: Nitrogen: DRIVEN Drimth rel: Not Reported Drl mthd: Case mat: STEEL Cs mt rel: Not Reported

Case diam: 0 Csdia rel: 11 Year cons: 0 Yr rel: U

Agentfirst: Not Reported Agentlast: Not Reported

jswan 07/06/00 12:06:56 kmckine 06/29/00 10:58:04 Updated: Created:

Flag: **YNYYYYNNNNNNNNNNNNNNN**

Utm x: 222667.81 Utm v: 4696953.75 IAPR30000069719 Site id:

SSE IA WELLS IAPU30000014351 1 - 2 Miles Lower

Mapid: 14351 Wellid: 27069 ld src fld: recordno Datasrc: **PVTP**

Well type: Permitted private wells T. 87 N., R. 47 W., Sec. 6, SW, NW, NW Location: Calc. +/- 140m.

Est loc ac: County: Woodbury Depth: unkn C p date: Owner name: William S

Primary use: household Other info:

222657.22 Xcoord: Ycoord: 4697168 Hlink: Not Reported 5/23/2000

Site id: IAPU30000014351

ENE IA WELLS IAUS20000003971

1 - 2 Miles Lower

Maplabelna: Sergeant Bluff WS-W3900

Legendtype: 39 Publicview: 0

Locid: 20000315476 Stfacid: 310349361

Progid: 5411

Facname: Sergeant Bluff Water Supply

Opstatus: Drilled Pistartdat: 25-MAR-05
Subname: W3900
Subprogid: 10539 Subaltidnu: Not Reported

Wellname: Not Reported Wellstatus: Not Reported

Totaldepth: 120

Drilldate: 30-DEC-99 Aquifertyp: Unconsolidated - Drift, Alluv, Bur

Aquiferran: Primary Countyname: Woodbury
Fo: 3 Accuracy: 20

Colmthtxt: GPS CODE (PSEUDO RANGE) STATION (SA OFFYELL

Verifytxt: Not Reported Collectby: WKTU

Coldate: 18-MAY-06

Loccomment: Legal, map, sdwis, geosam. Abandoned.

Congress: 5 Sthouse: 054

Stsenate: 27 Huc: 102300040302

Hyperlink: http://programs.iowadnr.gov/wateruse/

Lat: 42.40063 Lon: -96.35598 Xcoord: 223801 Ycoord: 4699717

Site id: IAUS20000003971

Y116
ENE
1A WELLS
IAPU30000013261

1 - 2 Miles Lower

 Mapid:
 13261
 Wellid:
 2412761

 Id src fld:
 tinwsf_is_number
 Datasrc:
 SDWI

Well type: SDWIS well Location: T88N, R47W, Sec. 30, SE, SW, SE

 County:
 Woodbury
 Est loc ac:
 +/- 20 m.

 Depth:
 120
 C p date:
 01/01/1981

Owner name: Sergeant Bluff Water Supply

Other info: Plugged Well #4 (1981); PWSID: 9774033; Status: Active

Xcoord: 223801 Ycoord: 4699717

Hlink: https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=310349361

Site id: IAPU30000013261

Y117 ENE 1 - 2 Miles Lower

IA WELLS IAPU30000013275

Mapid: 13275 Wellid: W3900 ld src fld: subname Datasrc: WTRU

Well type: Water Use Permit Wells Location: T88N, R47W, Sec. 30, SE, SW, SE

+/-20 County: Woodbury Est loc ac: Depth: 120 C p date: Not Reported

Owner name: Sergeant Bluff Water Supply

Other info: Water Use Permit 5411; Primary use: Municipal

Xcoord: 223801 4699717 Ycoord:

Hlink: https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=310349361

IAPU30000013275 Site id:

Y118 IA WELLS IAPU30000013277 ENE

1 - 2 Miles Lower

> 13277 Wellid: 41768 Mapid: ld src fld: Wnumber Datasrc: PUB

Well type: Public wells T. 88N., R. 47W., Sec. 30 Location:

County: Woodbury Est loc ac: GPS +/- 20 m Depth: 120 C p date: 01/01/1981

Owner name: Sergeant Bluff, City Of

Local name: Sergeant Bluff #4; Status: Plugged Other info:

Xcoord: 223801.35 Ycoord: 4699716.97

http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=41768 Hlink:

Site id: IAPU30000013277

X119 IAPU30000014346

SSE 1 - 2 Miles Lower

> 14346 Wellid: 69719 Mapid: ld src fld: recordno Datasrc: TEST

T. 87 N., R. 47 W., Sec. 6, SW, NW, NW Well type: Wells registered for testing Location:

Calc. +/- 140m. County: Woodbury Est loc ac:

Depth: 100 C p date: unkn

Williams, Linda Owner name:

Drilling method: Driven; Known well depth Other info:

Xcoord: 222650.22 Ycoord: 4697160 Hlink: Not Reported Site id: IAPU30000014346

Y120 IAPU30000013252 IA WELLS

1 - 2 Miles

TC4434731.2s Page A-61

IA WELLS

Mapid: 13252 Wellid: 25410 ld src fld: wnumber Datasrc: **GEOU**

Well type: IGS well database Location: T. 88N., R. 47W., Sec. 30, SE, SW, SE, SE

WOODBURY County: Est loc ac: Calc. +/- 230 ft Depth: 150 C p date: 09/01/1978

Owner name: SERGEANT BLUFF, CITY OF

Other info: Well type: Municipal

223793.25 Xcoord: 4699745 Ycoord:

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=25410

Site id: IAPU30000013252

Z121 WSW IA WELLS IAPU30000013533 1 - 2 Miles

Lower

Lower

13533 Wellid: 2110733 Mapid: ld src fld: wellnmbr Datasrc: **PWTS**

Well type: Private well tracking system T. 88 N., R. 48W., Sec. 35, SW, SE, SW, SW, NE Location:

County: Woodbury Est loc ac: nom. +/- 25m. Depth: 150 C p date: 05/10/1983

Owner name: WEIDNER, NEIL

Status: Active; Well use: Household Other info:

Xcoord: 220428.0825 Ycoord: 4698279.46186

http://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2110733&reportName=WellPrintout Hlink:

Site id: IAPU30000013533

Z122 IAPW30000035450

WSW 1 - 2 Miles

35450 2124760 Objectid: lwellid: Wellnmbr: 2110733 Pmtnmbr: Not Reported

Twp: 88 Rge: 48 Ew: W Sec: 35

SW, SE, SW, SW, NE Qqqqq:

Elev: 0

Elev acc: Not Reported

Well depth: 150 Br depth: 0 Wtr depth: 0 Latitude: 42.3865 Longitude: -96.3962 10-MAY-83 Dte done: Cty num: 97 Woodbury County: Not Reported Drlr name: Owner name: WEIDNER, NEIL Cnstr mthd: Rotary Drill

IA WELLS

Fm mk: Not Reported
Well use: Household
Status: Active
Ht pmp no: 0

Permit: Not Reported Plugging: Not Reported

Renovate: Not Reported Test: X

Xcoord: 220428.0825 Ycoord: 4698279.46186

Horiz acc: Not Reported Has litho: 0
Has prod: 0 Has wq: 1

Has constr: 0
Wnumber: 0

Hlink: https://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2110733&reportName=WellPrintout

Site id: IAPW30000035450

AA123 NE IA WELLS IAPU30000013118 1 - 2 Miles

1 - 2 Mil Lower

 Mapid:
 13118
 Wellid:
 2407260

 Id src fld:
 tinwsf_is_number
 Datasrc:
 SDWI

Well type: SDWIS well Location: T88N, R47W, Sec. 30, SE, SW, NE

County: Woodbury Est loc ac: +/- 15 m.

Depth: 186 C p date: 01/01/1953

Owner name: Sergeant Bluff Water Supply

Other info: Plugged Well # 2 (1953); PWSID: 9774033; Status: Active

Xcoord: 223669 Ycoord: 4700028

Hlink: https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=310349361

Site id: IAPU30000013118

AA124 NE IAUS20000001550

1 - 2 Miles Lower

Maplabelna: Sergeant Bluff WS-W4255

Legendtype: 39 Publicview: 0

 Locid:
 20000315478

 Stfacid:
 310349361

 Progid:
 5411

Facname: Sergeant Bluff Water Supply

Opstatus: Drilled Pistartdat: 25-MAR-05

Subname: W4255 Subprogid: 10540 Subaltidnu: Not Reported

Wellname: Not Reported
Wellstatus: Not Reported
Totaldepth: 120

Drilldate: 30-DEC-99 Aquifertyp: Unconsolidated - Drift, Alluv, Bur

 Aquiferran:
 Primary
 Countyname:
 Woodbury

 Fo:
 3
 Accuracy:
 100

 Colmthtxt:
 INTERPOLATION-PHOTO
 Refpnttxt:
 WELL

 Verifytxt:
 Not Reported
 Collectby:
 WKTU

Coldate: 18-MAY-06

Loccomment: Legal, map, sdwis, geosam. Sdwis not gps'd. Abandoned.

Congress: 5 Sthouse: 054

Stsenate: 27 Huc: 102300040302

Hyperlink: http://programs.iowadnr.gov/wateruse/

Lat: 42.40363 Lon: -96.35792 Xcoord: 223655 Ycoord: 4700056

Site id: IAUS20000001550

AA125 NE IA WELLS IAPU30000013105

1 - 2 Miles Lower

Mapid: 13105 Wellid: 2413648 Id src fld: tinwsf_is_number Datasrc: SDWI

Well type: SDWIS well Location: T88N, R47W, Sec. 30, SE, SW, NE

County: Woodbury Est loc ac: +/- 25 m.
Depth: 110 C p date: 01/01/1981

Owner name: Sergeant Bluff Water Supply

Other info: Plugged Well # 5 (1981); PWSID: 9774033; Status: Active

Xcoord: 223655 Ycoord: 4700056

Hlink: https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=310349361

Site id: IAPU30000013105

AA126 NE IA WELLS IAPU30000013112

1 - 2 Miles Lower

Mapid: 13112 Wellid: W4255 ld src fld: subname Datasrc: WTRU

Well type: Water Use Permit Wells Location: T88N, R47W, Sec. 30, SE, SW, NE

County: Woodbury Est loc ac: +/-100
Depth: 120 C p date: Not Reported

Owner name: Sergeant Bluff Water Supply

Other info: Water Use Permit 5411; Primary use: Municipal

Xcoord: 223655 Ycoord: 4700056

Hlink: https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=310349361

Site id: IAPU30000013112

AA127 NE IA WELLS IAPU30000013115

NE 1 - 2 Miles Lower

 Mapid:
 13115
 Wellid:
 41769

 Id src fld:
 Wnumber
 Datasrc:
 PUB

Well type: Public wells Location: T. 88N., R. 47W., Sec. 30

 County:
 Woodbury
 Est loc ac:
 Meas. +/- 230'

 Depth:
 110
 C p date:
 01/01/1981

Owner name: Sergeant Bluff, City Of

Other info: Local name: Sergeant Bluff #5; Status: Plugged

Xcoord: 223655.04 Ycoord: 4700057.26

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=41769

Site id: IAPU30000013115

AA128
NE
IA WELLS
IAPU30000013116

1 - 2 Miles Lower

 Mapid:
 13116
 Wellid:
 41770

 Id src fld:
 Wnumber
 Datasrc:
 PUB

Well type: Public wells Location: T. 88N., R. 47W., Sec. 30

 County:
 Woodbury
 Est loc ac:
 Meas. +/- 230'

 Depth:
 240
 C p date:
 01/01/1953

Owner name: Sergeant Bluff, City Of

Other info: Local name: Sergeant Bluff #3 (w41770); Status: Plugged

Xcoord: 223669.72 Ycoord: 4700040.26

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=41770

Site id: IAPU30000013116

AA129 NE IA WELLS IAPU30000013109

1 - 2 Miles Lower

 Mapid:
 13109
 Wellid:
 41771

 Id src fld:
 Wnumber
 Datasrc:
 PUB

Well type: Public wells Location: T. 88N., R. 47W., Sec. 30

 County:
 Woodbury
 Est loc ac:
 Meas. +/- 230'

 Depth:
 440
 C p date:
 01/01/1925

Owner name: Sergeant Bluff, City Of

Other info: Local name: Sergeant Bluff #1; Status: Not Used

Xcoord: 223669.77 Ycoord: 4700041.26

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=41771

Site id: IAPU30000013109

1 - 2 Miles Lower

 Mapid:
 13113
 Wellid:
 692

 Id src fld:
 Wnumber
 Datasrc:
 PUB

Well type: Public wells Location: T. 88N., R. 47W., Sec. 30

 County:
 Woodbury
 Est loc ac:
 Meas. +/- 230'

 Depth:
 455
 C p date:
 01/01/1938

Owner name: Sergeant Bluff, City Of

Other info: Local name: Sergeant Bluff #2; Status: Not Used

Xcoord: 223670.94 Ycoord: 4700040.26

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=692

Site id: IAPU30000013113

AB131
North
IA WELLS
IAPU30000012734
1 - 2 Miles

1 - 2 Miles Lower

Mapid: 12734 Wellid: 27572 Id src fld: recordno Datasrc: PLUG

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NW

County: Woodbury Est loc ac: Calc. +/- 140m.
Depth: 30 C p date: n.a.

Depth: 30 Owner name: City Of Sioux City, Mw-609-1

Other info: Well plugged: 9/15/1996; Well type: < 18" dia.

 Xcoord:
 222393.05

 Ycoord:
 4700822.5

 Hlink:
 Not Reported

 Site id:
 IAPU30000012734

AB132 North IA WELLS IAPU30000012731

1 - 2 Miles Lower

Mapid: 12731 Wellid: 27577 Id src fld: pecordno Datasrc: PLUG

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NW

County: Woodbury Est loc ac: Calc, +/- 140m.

Depth: 25 C p date: n.a.

Owner name: City Of Sioux City, Mw-609-3

Other info: Well plugged: 9/15/1996; Well type: < 18" dia.

 Xcoord:
 222394.05

 Ycoord:
 4700822.5

 Hlink:
 Not Reported

 Site id:
 IAPU30000012731

AC133 NE IA WELLS IAUS20000005917

1 - 2 Miles Higher

Maplabelna: Sergeant Bluff WS-W3901

Legendtype: 39 Publicview: 0

Locid: 20000315477 Stfacid: 310349361 Progid: 5411

Facname: Sergeant Bluff Water Supply

Opstatus: Drilled Pistartdat: 25-MAR-05

Subname: W3901

Subprogid: 10542 Subaltidnu: Not Reported

Wellname: Not Reported

Wellstatus: Not Reported

Totaldepth: 245

Drilldate: 30-DEC-99 Aquifertyp: Cretaceous (Dakota)

Aquiferran: Secondary Countyname: Woodbury
Fo: 3 Accuracy: 20

Colmthtxt: GPS CODE (PSEUDO RANGE) STANDINGED POSITION (SA OFFYELL
Verifytxt: Not Reported Collectby: WKTU

Coldate: 18-MAY-06

Loccomment: Legal, map, sdwis, geosam. Abandoned.

Congress: 5 Sthouse: 054

Stsenate: 27 Huc: 102300040302 Hyperlink: http://programs.iowadnr.gov/wateruse/

Lat: 42.40488 Lon: -96.35887 Xcoord: 223582 Ycoord: 4700198

Site id: IAUS20000005917

AC134 NE IA WELLS IAPU30000013063 1 - 2 Miles

Higher

Mapid: 13063 Wellid: W3901 Id src fld: subname Datasrc: WTRU

Well type: Water Use Permit Wells Location: T88N, R47W, Sec. 30, SE, NW, SW

County: Woodbury Est loc ac: +/-20
Depth: 245 C p date: Not Reported

Owner name: Sergeant Bluff Water Supply

Other info: Water Use Permit 5411; Primary use: Municipal

Xcoord: 223582 Ycoord: 4700198

Hlink: https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=310349361

Site id: IAPU30000013063

AC135 NE IA WELLS IAPU30000013067

NE 1 - 2 Miles Higher

 Mapid:
 13067
 Wellid:
 2407518

 Id src fld:
 tinwsf_is_number
 Datasrc:
 SDWI

Well type: SDWIS well Location: T88N, R47W, Sec. 30, SE, NW, SW

 County:
 Woodbury
 Est loc ac:
 +/- 20 m.

 Depth:
 245
 C p date:
 01/01/1981

Owner name: Sergeant Bluff Water Supply

Other info: Plugged Well # 3 (1981); PWSID: 9774033; Status: Active

Xcoord: 223582 Ycoord: 4700198

Hlink: https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=310349361

Site id: IAPU30000013067

•

AC136 NE 1 - 2 Miles Higher

IA WELLS IAPU30000013064

 Mapid:
 13064
 Wellid:
 41767

 Id src fld:
 Wnumber
 Datasrc:
 PUB

Well type: Public wells Location: T. 88N., R. 47W., Sec. 30

 County:
 Woodbury
 Est loc ac:
 GPS +/- 20 m

 Depth:
 245
 C p date:
 01/01/1981

Owner name: Sergeant Bluff, City Of

Other info: Local name: Sergeant Bluff #3 (w41767); Status: Plugged

Xcoord: 223582.15 Ycoord: 4700198.36

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=41767

Site id: IAPU30000013064

AA137
NE
1A WELLS
1AUS20000001447
1 - 2 Miles

Lower

Lower

Maplabelna: Sergeant Bluff WS-W4256

Legendtype: 39 Publicview: 0

Locid: 20000315479 Stfacid: 310349361 Progid: 5411

Facname: Sergeant Bluff Water Supply

Opstatus: Drilled Pistartdat: 25-MAR-05

Subname: W4256

Subprogid: 10541 Subaltidnu: Not Reported

Wellname: Not Reported Wellstatus: Not Reported

Totaldepth: 245

Drilldate: 30-DEC-99 Aquifertyp: Cretaceous (Dakota)

Aquiferran: Secondary Countyname: Woodbury Fo: Accuracy: 3 100 INTERPOLATION-PHOTO WELL Colmthtxt: Refpnttxt: Verifytxt: Not Reported Collectby: WKTU

Coldate: 18-MAY-06

Loccomment: Point taken from MW_Intake, map, geosam. Abandoned.

Congress: 5 Sthouse: 054

Stsenate: 27 Huc: 102300040302

Hyperlink: http://programs.iowadnr.gov/wateruse/

Lat: 42.40362 Lon: -96.35733 Xcoord: 223703 Ycoord: 4700053

Site id: IAUS20000001447

AA138
NE
IA WELLS
IAPU30000013117
1 - 2 Miles

Mapid: 13117 Wellid: W4256

 Id src fld:
 subname
 Datasrc:
 WTRU

 Well type:
 Water Use Permit Wells
 Location:
 T88N, R47W, Sec. 30, SE, SW, NE

County: Woodbury Est loc ac: +/-100
Depth: 245 C p date: Not Reported

Owner name: Sergeant Bluff Water Supply

Other info: Water Use Permit 5411; Primary use: Municipal

Xcoord: 223703 Ycoord: 4700053

Hlink: https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=310349361

Site id: IAPU30000013117

AB139 North 1 - 2 Miles IA WELLS IAPU30000012718

Higher

12718 Wellid: 27578 Mapid: PLUG ld src fld: recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NW

Woodbury Calc. +/- 140m. County: Est loc ac: C p date:

Depth:

Owner name: City Of Sioux City, Mw-609-4

Other info: Well plugged: 9/15/1996; Well type: < 18" dia.

222394.05 Xcoord: Ycoord: 4700827.5 Hlink: Not Reported IAPU30000012718 Site id:

AB140 IA WELLS IAPU30000012724 North

1 - 2 Miles Higher

> 12724 Wellid: 27593 Mapid: **PLUG** ld src fld: recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NW

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: C p date: n.a.

Owner name: City Of Sioux City, Amw-7

Well plugged: 9/12/1996; Well type: < 18" dia. Other info:

222396.05 Xcoord: Ycoord: 4700828.5 Hlink: Not Reported IAPU30000012724 Site id:

AB141 North IA WELLS IAPU30000012720

1 - 2 Miles Higher

> 12720 Wellid: 27573 Mapid: ld src fld: recordno Datasrc: PLUG

Registered abandoned wells T. 88 N., R. 48 W., Sec. 25, NE, SE, NW Well type: Location:

Woodbury Calc. +/- 140m. County: Est loc ac:

Depth: C p date:

Owner name: City Of Sioux City, Mw-609-2

Well plugged: 9/15/1996; Well type: < 18" dia. Other info:

222396.05 Xcoord: Ycoord: 4700833.5 Not Reported Hlink:

n.a.

Site id: IAPU30000012720

AB142 North 1 - 2 Miles IA WELLS IAPU30000012709

Higher

12709 Wellid: 27579 Mapid: Datasrc: PLUG ld src fld: recordno

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NW

Woodbury Calc. +/- 140m. County: Est loc ac: C p date:

Depth: Owner name: City Of Sioux City, Mw-609-5

Well plugged: 9/15/1996; Well type: < 18" dia. Other info:

222392.05 Xcoord: Ycoord: 4700837.5 Hlink: Not Reported IAPU30000012709 Site id:

AD143 South 1 - 2 Miles Lower

Wellid: Mapid: 14377 18890 **PVTP** ld src fld: recordno Datasrc:

Well type: Permitted private wells Location: T. 87 N., R. 48 W., Sec. 1, SE, NE, SW

Woodbury Est loc ac: Calc. +/- 140m. County: Depth: 125 C p date: unkn

Owner name: 27 Flags Golf Course Other info: Primary use: Irrigation

Xcoord: 222243 Ycoord: 4696992.5 Hlink: Not Reported IAPU30000014377 Site id:

AE144 IA WELLS IAPU30000013203

1 - 2 Miles Lower

> 13203 Wellid: 39250 Mapid: ld src fld: wnumber Datasrc: **GEOU**

IGS well database T. 88N., R. 48W., Sec. 35, NW, NE, SW, SE Well type: Location:

Calc. +/- 230 ft WOODBURY County: Est loc ac: 04/11/1977 Depth: C p date:

Owner name: BOYER, BERNICE C. Other info: Well type: Irrigation Xcoord: 220219.94 Ycoord: 4698835.79

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=39250

IA WELLS

IAPU30000014377

Site id: IAPU30000013203

AD145 South IA WELLS IAPU30000014378

1 - 2 Miles Lower

Mapid: 14378 Wellid: 39416 Id src fld: wnumber Datasrc: GEOU

Well type: IGS well database Location: T. 87N., R. 48W., Sec. 1, SE, NE, SW

 County:
 WOODBURY
 Est loc ac:
 Calc. +/- 140 m.

 Depth:
 97
 C p date:
 09/11/1996

Owner name: JOHNSON, TERRY
Other info: Well type: Irrigation
Xcoord: 222235.04
Ycoord: 4696987.66

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=39416

Site id: IAPU30000014378

AF146
ENE IA WELLS IAPU30000013394

1 - 2 Miles Lower

 Mapid:
 13394
 Wellid:
 2408177

 Id src fld:
 tinwsf_is_number
 Datasrc:
 SDWI

Well type: SDWIS well Location: T88N, R47W, Sec. 31

County: Woodbury Est loc ac: +/- 3300 m.

Depth: unkn C p date: Not Reported

Owner name: Miracle Corner Mhp

Other info: Well # 1 (); PWSID: 9700634; Status: Inactive

Xcoord: 223986 Ycoord: 4699552

Hlink: https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=310343558

Site id: IAPU30000013394

AF147
ENE

IA WELLS
IAPU30000013405

1 - 2 Miles Lower

Mapid: 13405 Wellid: 2412300 Id src fld: tinwsf_is_number Datasrc: SDWI

Well type: SDWIS well Location: T88N, R47W, Sec. 31

County: Woodbury Est loc ac: +/- 3300 m.

Depth: unkn C p date: Not Reported

Owner name: David's Airport Standard

Other info: Well # 1 (); PWSID: 9700778; Status: Inactive

Xcoord: 223986 Ycoord: 4699552

Hlink: https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=310344348

Site id: IAPU30000013405

AG148
North
1 - 2 Miles

IA WELLS
IAPU30000012748

Lower

Mapid: 12748 Wellid: 27556 Id src fld: pecordno Datasrc: PLUG

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NE

County: Woodbury Est loc ac: Calc. +/- 140m.
Depth: 18 C p date: n.a.

Owner name: City Of Sioux City, Mw-605-3

Other info: Well plugged: 9/15/1996; Well type: < 18" dia.

 Xcoord:
 222581.75

 Ycoord:
 4700815

 Hlink:
 Not Reported

 Site id:
 IAPU30000012748

AG149 North IA WELLS IAPU30000012772

1 - 2 Miles Lower

Mapid: 12772 Wellid: 27566 Id src fld: petordno Datasrc: PLUG

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NE

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: 25 C p date: n.a.

Owner name: City Of Sioux City, Mw-607-2

Other info: Well plugged: 9/16/1996; Well type: < 18" dia.

 Xcoord:
 222591.75

 Ycoord:
 4700814

 Hlink:
 Not Reported

 Site id:
 IAPU30000012772

AG150 North IA WELLS IAPU30000012767

1 - 2 Miles Lower

Mapid: 12767 Wellid: 27561 Id src fld: petordno Datasrc: PLUG

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NE

County: Woodbury Est loc ac: Calc. +/- 140m.
Depth: 33 C p date: n.a.

Owner name: City Of Sioux City, Mw-606-3

Other info: Well plugged: 9/16/1996; Well type: < 18" dia.

 Xcoord:
 222587.75

 Ycoord:
 4700815

 Hlink:
 Not Reported

Site id: IAPU30000012767

AG151 North 1 - 2 Miles IA WELLS IAPU30000012756

Lower

12756 Wellid: 27567 Mapid: recordno Datasrc: PLUG ld src fld:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NE

Woodbury Calc. +/- 140m. County: Est loc ac: C p date:

Depth: City Of Sioux City, Mw-607-3 Owner name:

Other info: Well plugged: 9/16/1996; Well type: < 18" dia.

222592.75 Xcoord:

Ycoord: 4700816 Not Reported Hlink: IAPU30000012756 Site id:

AG152 IA WELLS IAPU30000012764 North 1 - 2 Miles

Lower

12764 Wellid: 27571 Mapid: **PLUG** ld src fld: recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NE

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: 28 C p date: n.a.

Owner name: City Of Sioux City, Mw-607-7

Well plugged: 9/16/1996; Well type: < 18" dia. Other info:

222585.75 Xcoord: Ycoord: 4700818 Hlink: Not Reported IAPU30000012764 Site id:

AG153 North IA WELLS IAPU30000012751

1 - 2 Miles Lower

> Mapid: 12751 Wellid: 27564 ld src fld: recordno Datasrc: **PLUG**

Registered abandoned wells T. 88 N., R. 48 W., Sec. 25, NE, SE, NE Well type: Location:

Calc. +/- 140m. County: Woodbury Est loc ac: C p date: n.a.

Depth: Owner name: City Of Sioux City, Mw-606-6

Well plugged: 9/16/1996; Well type: < 18" dia. Other info:

222589.75 Xcoord: Ycoord: 4700818 Hlink: Not Reported

Site id: IAPU30000012751

AG154 North 1 - 2 Miles IA WELLS IAPU30000012757

Lower

12757 Wellid: 27558 Mapid: PLUG ld src fld: recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NE

Woodbury Calc. +/- 140m. County: Est loc ac: C p date:

Depth:

City Of Sioux City, Mw-605-5 Owner name:

Other info: Well plugged: 9/15/1996; Well type: < 18" dia.

222583.75 Xcoord: Ycoord: 4700820 Hlink: Not Reported IAPU30000012757 Site id:

AG155 IA WELLS IAPU30000012768 North 1 - 2 Miles

Lower

12768 Wellid: 27568 Mapid: **PLUG** ld src fld: recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NE

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: 30 C p date: n.a.

Owner name: City Of Sioux City, Mw-607-4

Well plugged: 9/16/1996; Well type: < 18" dia. Other info:

222590.75 Xcoord: Ycoord: 4700819 Hlink: Not Reported IAPU30000012768 Site id:

AG156 North IA WELLS IAPU30000012754

1 - 2 Miles Lower

> Mapid: 12754 Wellid: 27555 ld src fld: recordno Datasrc: **PLUG**

Registered abandoned wells T. 88 N., R. 48 W., Sec. 25, NE, SE, NE Well type: Location:

C p date:

Calc. +/- 140m. County: Woodbury Est loc ac:

Depth: Owner name: City Of Sioux City, Mw-605-2

Well plugged: 9/15/1996; Well type: < 18" dia. Other info:

222595.75 Xcoord: Ycoord: 4700819 Hlink: Not Reported n.a.

Site id: IAPU30000012754

AG157 North 1 - 2 Miles IA WELLS IAPU30000012771

Lower

12771 Wellid: 27570 Mapid: PLUG ld src fld: recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NE

Woodbury Calc. +/- 140m. County: Est loc ac: C p date:

Depth: City Of Sioux City, Mw-607-6 Owner name:

Other info: Well plugged: 9/16/1996; Well type: < 18" dia.

222585.75 Xcoord: Ycoord: 4700822 Not Reported Hlink: IAPU30000012771 Site id:

AG158 IA WELLS IAPU30000012755 North

1 - 2 Miles Lower

> 12755 Wellid: 27554 Mapid: **PLUG** ld src fld: recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NE

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: C p date: n.a.

Owner name: City Of Sioux City, Mw-605-1

Well plugged: 9/15/1996; Well type: < 18" dia. Other info:

222593.75 Xcoord: Ycoord: 4700822 Hlink: Not Reported IAPU30000012755 Site id:

AG159 North IA WELLS IAPU30000012750

1 - 2 Miles Lower

> Mapid: 12750 Wellid: 27569 ld src fld: recordno Datasrc: **PLUG**

Registered abandoned wells T. 88 N., R. 48 W., Sec. 25, NE, SE, NE Well type: Location:

Calc. +/- 140m. County: Woodbury Est loc ac: C p date: n.a.

Depth: Owner name: City Of Sioux City, Mw-607-5

Well plugged: 9/16/1996; Well type: < 18" dia. Other info:

222595.75 Xcoord: Ycoord: 4700822 Not Reported Hlink:

Site id: IAPU30000012750

AG160 North 1 - 2 Miles IA WELLS IAPU30000012760

Lower

12760 Wellid: 27592 Mapid: PLUG ld src fld: recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NE

Woodbury Calc. +/- 140m. County: Est loc ac: C p date:

Depth:

Owner name: City Of Sioux City, Amw-6

Other info: Well plugged: 9/13/1996; Well type: < 18" dia.

222586.75 Xcoord: Ycoord: 4700826 Not Reported Hlink: IAPU30000012760 Site id:

AG161 IA WELLS IAPU30000012762 North 1 - 2 Miles

Lower

12762 Wellid: 27581 Mapid: **PLUG** ld src fld: recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NE

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: 25 C p date: n.a.

Owner name: City Of Sioux City, Mw-610-2

Well plugged: 9/15/1996; Well type: < 18" dia. Other info:

222592.75 Xcoord: Ycoord: 4700825 Hlink: Not Reported IAPU30000012762 Site id:

AG162 North IA WELLS IAPU30000012761

1 - 2 Miles Lower

> Mapid: 12761 Wellid: 27565 ld src fld: recordno Datasrc: **PLUG**

Registered abandoned wells T. 88 N., R. 48 W., Sec. 25, NE, SE, NE Well type: Location:

Calc. +/- 140m. County: Woodbury Est loc ac: C p date: n.a.

Depth: Owner name: City Of Sioux City, Mw-607-1

Well plugged: 9/16/1996; Well type: < 18" dia. Other info:

222598.75 Xcoord: Ycoord: 4700824 Not Reported Hlink:

Site id: IAPU30000012761

AG163 North 1 - 2 Miles IA WELLS IAPU30000012763

Lower

12763 Wellid: 27562 Mapid: PLUG ld src fld: Datasrc: recordno

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NE

Woodbury Calc. +/- 140m. County: Est loc ac: C p date:

Depth:

City Of Sioux City, Mw-606-4 Owner name:

Other info: Well plugged: 9/16/1996; Well type: < 18" dia.

222590.75 Xcoord: Ycoord: 4700827 Hlink: Not Reported IAPU30000012763 Site id:

AG164 IA WELLS IAPU30000012746 North 1 - 2 Miles

Lower

12746 Wellid: 27583 Mapid: **PLUG** ld src fld: recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NE

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: C p date: n.a.

Owner name: City Of Sioux City, Mw-610-4

Well plugged: 9/15/1996; Well type: < 18" dia. Other info:

222596.75 Xcoord: Ycoord: 4700826 Hlink: Not Reported IAPU30000012746 Site id:

AG165 North IA WELLS IAPU30000012744

1 - 2 Miles Lower

> Mapid: 12744 Wellid: 27563 ld src fld: recordno Datasrc: **PLUG**

Registered abandoned wells T. 88 N., R. 48 W., Sec. 25, NE, SE, NE Well type: Location:

Woodbury Calc. +/- 140m. County: Est loc ac: n.a.

Depth: C p date:

Owner name: City Of Sioux City, Mw-606-5

Well plugged: 9/16/1996; Well type: < 18" dia. Other info:

222592.75 Xcoord: Ycoord: 4700827 Not Reported Hlink:

Site id: IAPU30000012744

AG166 North 1 - 2 Miles IA WELLS IAPU30000012758

Lower

12758 Wellid: 27560 Mapid: recordno Datasrc: PLUG ld src fld:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NE

Woodbury Calc. +/- 140m. County: Est loc ac: C p date:

Depth: City Of Sioux City, Mw-606-2 Owner name:

Other info: Well plugged: 9/16/1996; Well type: < 18" dia.

222592.75 Xcoord: Ycoord: 4700827 Hlink: Not Reported IAPU30000012758 Site id:

AG167 IA WELLS IAPU30000012749 North 1 - 2 Miles Lower

12749 Wellid: 27580 Mapid: **PLUG** ld src fld: recordno Datasrc:

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NE

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: 33 C p date: n.a.

Owner name: City Of Sioux City, Mw-610-1

Well plugged: 9/15/1996; Well type: < 18" dia. Other info:

222584.75 Xcoord: Ycoord: 4700830 Hlink: Not Reported IAPU30000012749 Site id:

AG168 North IA WELLS IAPU30000012747

1 - 2 Miles Lower

> Mapid: 12747 Wellid: 27559 ld src fld: recordno Datasrc: **PLUG**

Registered abandoned wells T. 88 N., R. 48 W., Sec. 25, NE, SE, NE Well type: Location:

Calc. +/- 140m. County: Woodbury Est loc ac: Depth: C p date: n.a.

Owner name: City Of Sioux City, Mw-606-1

Well plugged: 9/16/1996; Well type: < 18" dia. Other info:

222583.75 Xcoord: Ycoord: 4700831 Not Reported Hlink:

Site id: IAPU30000012747

AE169 West 1 - 2 Miles IA WELLS IAUS20000000109

Lower

Maplabelna: Sally Bjork-W55

0 Legendtype: Publicview:

20000321159 Locid: Stfacid: 310426107 Progid: 4373 Facname: Sally Bjork Drilled Opstatus:

Pistartdat: 20-MAR-12 W55 Subname: Subprogid: 5256 Subaltidnu: Not Reported

Wellname: Not Reported Wellstatus: Not Reported

Totaldepth: 86

Aquifertyp: Drilldate: 30-DEC-99 Unconsolidated - Drift, Alluv, Bur

Aquiferran: Primary Countyname: Woodbury Fo: 3 Accuracy: 100

CENTER OF FACILITY Colmthtxt: INTERPOLATION-PHOTO Refpnttxt: Collectby: CHenders

Verifytxt: Not Reported

Coldate: 28-MAR-06

Loccomment: First point clicked in WUSE map applet 054 Congress: Sthouse:

Stsenate: 27 Huc: 1023000108

Hyperlink: http://programs.iowadnr.gov/wateruse/

Lat: 42.39126 Lon: -96.39925 Xcoord: 220198 Ycoord: 4698818

Site id: IAUS20000000109

AE170 IAPU30000013213 West 1 - 2 Miles IA WELLS

Lower

13213 Wellid: W55 Mapid: WTRU ld src fld: subname Datasrc:

Well type: Water Use Permit Wells Location: T88N, R48W, Sec. 35

County: Woodbury Est loc ac: +/-100 86 Not Reported Depth: C p date:

Owner name: Sally Bjork

Water Use Permit 4373; Primary use: General farm crops Other info:

Xcoord: Ycoord: 4698818

https://facilityexplorer.iowadnr.gov/FacilityExplorer/SiteDetail.aspx?facID=310426107 Hlink:

Site id: IAPU30000013213

AH171 ESE 1 - 2 Miles Lower

IAPR30000017381 IA WELLS

Recordno: 17381 Twp: 88 N s: N Rge: 47 Ew: W Sec: 31 SE SE Qqqqq: Q abc: DD Checked: jwycisk 09/09/96 11:09:15 Ownerfirst: JAMES E

RUBLE Ownerlast: Owneraddr: 119 PIONEER VALLEY

Ownercity: SERGEANT BLUFF Ownerst:

Ownerzip: 51054 Ownerphone: 7129434143 97 SESE31 8847W County: Legal: 110 Dpth rel: Not Reported Depth: Permit: Not Reported Sampldte: 29-JUL-96

SIOUXLAND DISTRICT HEALTH DEPT. Lab:

Lab no: ME

Anal dte: 31-JUL-96 Smplsrce: KITCHEN FAUCET Bact Itb: Not Reported Bact bgb: Not Reported Bactr: Not Reported Bact: 0

Bctcolml: 0 Bact s u: U No3r: < No3: 0

S .100000001490116 No3 s u: Nitrogen: Drl mthd: Not Reported Drimth rel: Not Reported Case mat: STEEL Cs mt rel: Not Reported Case diam: 2.5 Csdia rel: Not Reported Year cons: 1989 Yr rel: Not Reported Agentfirst: Not Reported Agentlast: Not Reported

Created: pheesch 09/06/96 15:52:16 jwycisk 09/09/96 11:09:15 Updated:

Flag: NUNUNUNUNUNUNUNUNUNUN

Utm x: 224015.75 4698057.25 Utm y: Site id: IAPR30000017381

AG172 IAPU30000012743 North 1 - 2 Miles IA WELLS

Lower

12743 Wellid: 27557 Mapid: PLUG ld src fld: recordno Datasrc:

T. 88 N., R. 48 W., Sec. 25, NE, SE, NE Well type: Registered abandoned wells Location:

Woodbury County: Est loc ac: Calc. +/- 140m.

Depth: C p date: n.a.

City Of Sioux City, Mw-605-4 Owner name:

Well plugged: 9/15/1996; Well type: < 18" dia. Other info:

Xcoord: 222594.75 Ycoord: 4700829 Hlink: Not Reported Site id: IAPU30000012743

AG173 IAPU30000012752 IA WELLS

North 1 - 2 Miles Lower

 Mapid:
 12752
 Wellid:
 27582

 Id src fld:
 recordno
 Datasrc:
 PLUG

Well type: Registered abandoned wells Location: T. 88 N., R. 48 W., Sec. 25, NE, SE, NE

n.a.

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: 35 C p date:

Owner name: City Of Sioux City, Mw-610-3

Other info: Well plugged: 9/15/1996; Well type: < 18" dia.

 Xcoord:
 222591.75

 Ycoord:
 4700830

 Hlink:
 Not Reported

 Site id:
 IAPU30000012752

AA174
NE IA WELLS IAPU30000013125

1 - 2 Miles Lower

 Mapid:
 13125
 Wellid:
 2088538

 Id src fld:
 wellnmbr
 Datasrc:
 PWTS

Well type: Private well tracking system Location: T. 88 N., R. 47W., Sec. 30, SW, SE, NE, NE, SE

 County:
 Woodbury
 Est loc ac:
 nom. +/- 25m.

 Depth:
 250
 C p date:
 01/01/1960

Owner name: SERGEANT BLUFF, CITY OF Other info: Status: Active; Well use: Household

Xcoord: 223778.502208 Ycoord: 4700014.85434

Hlink: http://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2088538&reportName=WellPrintout

Site id: IAPU30000013125

AA175

NE 1 - 2 Miles Lower

 Mapid:
 13127
 Wellid:
 2088537

 Id src fld:
 wellnmbr
 Datasrc:
 PWTS

Well type: Private well tracking system Location: T. 88 N., R. 47W., Sec. 30, SW, SE, NE, NE, SE

 County:
 Woodbury
 Est loc ac:
 nom. +/- 25m.

 Depth:
 250
 C p date:
 01/01/1960

Owner name: SERGEANT BLUFF, CITY OF
Other info: Status: Plugged; Well use: Household

Xcoord: 223778.502208 Ycoord: 4700014.85434

Hlink: http://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2088537&reportName=WellPrintout

Site id: IAPU30000013127

AA176

NE 1 - 2 Miles Lower IA WELLS IAPU30000013133

IAPU30000013127

IA WELLS

 Mapid:
 13133
 Wellid:
 2088539

 Id src fld:
 wellnmbr
 Datasrc:
 PWTS

Well type: Private well tracking system Location: T. 88 N., R. 47W., Sec. 30, SW, SE, NE, NE, SE

 County:
 Woodbury
 Est loc ac:
 nom. +/- 25m.

 Depth:
 250
 C p date:
 01/01/1960

Owner name: SERGEANT BLUFF, CITY OF Other info: Status: Active; Well use: Household

Xcoord: 223778.502208 Ycoord: 4700014.85434

Hlink: http://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2088539&reportName=WellPrintout

Site id: IAPU30000013133

AA177 NE IA WELLS IAPW30000010995

1 - 2 Miles Lower

Drlr name:

 Objectid:
 10995
 Iwellid:
 2093852

 Wellnmbr:
 2088537
 Pmtnmbr:
 Not Reported

Twp: 88
Rge: 47
Ew: W
Sec: 30

Qqqqq: SW, SE, NE, NE, SE

Elev: 0

Elev acc: Not Reported

250 Well depth: Br depth: 0 Wtr depth: 0 Latitude: 42.4033 Longitude: -96.3564 01-JAN-60 Dte done: Cty num: 97 County: Woodbury

Owner name: SERGEANT BLUFF, CITY OF

Not Reported

Cnstr mthd: Rotary Drill
Fm mk: Not Reported
Well use: Household
Status: Plugged
Ht pmp no: 0

Permit: Not Reported Plugging: X

Renovate: Not Reported Test: Not Reported

Xcoord: 223778.502208 Ycoord: 4700014.85434

Horiz acc: Not Reported Has litho: 0
Has prod: 0 Has wq: 0

Has constr: 0 Wnumber: 0

Hlink: https://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2088537&reportName=WellPrintout

Site id: IAPW30000010995

AA178 NE 1 - 2 Miles

IA WELLS IAPW30000010996

 Objectid:
 10996
 Iwellid:
 2093853

 Wellnmbr:
 2088538
 Pmtnmbr:
 Not Reported

Twp: 88
Rge: 47
Ew: W
Sec: 30

Qqqqq: SW, SE, NE, NE, SE

Elev: 0

Elev acc: Not Reported

Well depth: 250 Br depth: 0 Wtr depth: 0 Latitude: 42.4033 Longitude: -96.3564 Dte done: 01-JAN-60 Cty num: 97 County: Woodbury Drlr name: Not Reported

Owner name: SERGEANT BLUFF, CITY OF

Cnstr mthd: Rotary Drill
Fm mk: Not Reported
Well use: Household
Status: Active
Ht pmp no: 0

Permit: Not Reported Plugging: Not Reported Renovate: Not Reported Test: Not Reported

Xcoord: 223778.502208 Ycoord: 4700014.85434

Horiz acc: Not Reported Has litho: 0
Has prod: 0 Has wq: 0

Has constr: 0 Wnumber: 0

Hlink: https://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2088538&reportName=WellPrintout

Site id: IAPW30000010996

AA179
NE IA WELLS IAPW3000016881

1 - 2 Miles Lower

 Objectid:
 16881
 Iwellid:
 2093854

 Wellnmbr:
 2088539
 Pmtnmbr:
 Not Reported

 Twp:
 88

 Rge:
 47

 Ew:
 W

 Sec:
 30

Qqqqq: SW, SE, NE, NE, SE

Elev: 0

Elev acc: Not Reported Well depth: 250

0 Br depth: Wtr depth: 0 Latitude: 42.4033 Longitude: -96.3564 Dte done: 01-JAN-60 Cty num: 97 County: Woodbury Drlr name: Not Reported

Owner name: SERGEANT BLUFF, CITY OF

Cnstr mthd: Rotary Drill

Fm rmk: Not Reported Well use: Household Status: Active 0 Ht pmp no:

Permit: Not Reported Plugging: Not Reported Not Reported Not Reported Renovate: Test:

Xcoord: 223778.502208 Ycoord: 4700014.85434

0 Not Reported Has litho: Horiz acc: 0 Has prod: 0 Has wq:

Has constr. 0 Wnumber. 0

https://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2088539&reportName=WellPrintout Hlink:

IAPW30000016881 Site id:

AF180 ENE 1 - 2 Miles IAPU30000013429 IA WELLS

Lower

Mapid: 13429 Wellid: 230 **PVTP** ld src fld: recordno Datasrc:

T. 88 N., R. 47 W., Sec. 31, NENE Well type: Permitted private wells Location:

Calc. +/- 285m. County: Woodbury Est loc ac: C p date: unkn

Depth: 100 Owner name: Unkn

Primary use: Irrigation Other info:

Xcoord-224031.44 4699482.5 Ycoord: Hlink: Not Reported Site id: IAPU30000013429

181 South IA WELLS IAPU30000014390

1 - 2 Miles Higher

Lower

Mapid: 14390 Wellid: 19442 ld src fld: recordno Datasrc: **PVTP**

Location: T. 87 N., R. 48 W., Sec. 1, SE, NE, SE Well type: Permitted private wells

Woodbury Est loc ac: Calc. +/- 140m. County: 10/29/1996 Depth: C p date:

Owner name: Twenty Seven Flags Course Other info: Primary use: irrigation

222439.91 Xcoord: 4696978.5 Ycoord: Not Reported Hlink: Site id: IAPU30000014390

AF182 ENE IA WELLS IAPU30000013427 1 - 2 Miles

TC4434731.2s Page A-84

Mapid: 13427 Wellid: ld src fld: recordno Datasrc:

T. 88 N., R. 47 W., Sec. 31, NE, NE Well type: Permitted private wells Location:

15379

PVTP

unkn

Calc. +/- 285m.

IA WELLS

Est loc ac: Woodbury County: Depth: 100 C p date: Owner name: Unkn

Other info: Primary use: Irrigation

Xcoord: 224033.44 4699497.5 Ycoord: Not Reported Hlink: IAPU30000013427 Site id:

AH183 ESE 1 - 2 Miles IA WELLS IAPU30000013980

Lower

Mapid: 13980 Wellid: 17381 ld src fld: recordno Datasrc: TEST

Well type: Wells registered for testing Location: T. 88 N., R. 47 W., Sec. 31, SE, SE

County: Woodbury Est loc ac: Calc. +/- 285m.

Depth: 110 C p date: 1989

Owner name: Ruble, James E

Other info:

Xcoord: 224006.22 4698262.5 Ycoord: Hlink: Not Reported Site id: IAPU30000013980

AI184 NE 1 - 2 Miles Lower

Objectid: 13356 Iwellid: 2096529 Wellnmbr: 2090490 Pmtnmbr: Not Reported

Twp: 88 Rge: 47 Ew: W 30 Sec:

SW, SE, NE, NE, SE Qqqqq:

Elev: 0

Elev acc: Not Reported

Well depth: 110 Br depth: 0 Wtr depth: 0 Latitude: 42.4035 Longitude: -96.3563 01-JAN-60 Dte done: Cty num: 97 County: Woodbury Drir name: Not Reported

Owner name:

Rotary Drill Cnstr mthd:

IAPW30000013356

Fm mk: Not Reported Well use: Commercial Status: Plugged Ht pmp no: 0

Permit: Not Reported Plugging:

Renovate: Not Reported Test: Not Reported

Xcoord: 223787.611152 Ycoord: 4700036.73967

Horiz acc: Not Reported Has litho: 0
Has prod: 0 Has wq: 0

Has constr: 0
Wnumber: 0

Hlink: https://programs.iowadnr.gov/pwts/\/iewReport.aspx?parameters=vchWellNmbr%5ct2090490&reportName=WellPrintout

Site id: IAPW30000013356

AI185 NE IA WELLS IAPU30000013126

1 - 2 Miles

 Mapid:
 13126
 Wellid:
 2090490

 Id src fld:
 wellnmbr
 Datasrc:
 PWTS

Well type: Private well tracking system Location: T. 88 N., R. 47W., Sec. 30, SW, SE, NE, NE, SE

 County:
 Woodbury
 Est loc ac:
 nom. +/- 25m.

 Depth:
 110
 C p date:
 01/01/1960

Owner name: Not Reported

Other info: Status: Plugged; Well use: Commercial

Xcoord: 223787.611152 Ycoord: 4700036.73967

Hlink: http://programs.iowadnr.gov/pwts/ViewReport.aspx?parameters=vchWellNmbr%5ct2090490&reportName=WellPrintout

Site id: IAPU30000013126

AJ186 SSW IA WELLS IAPU3000014094

1 - 2 Miles Higher

Higher

Mapid: 14094 Wellid: 71943 Id src fld: recordno Datasrc: TEST

Well type: Wells registered for testing Location: T. 87 N., R. 48 W., Sec. 1, SW, NW, NW

County: Woodbury Est loc ac: Calc. +/- 140m.

Depth: 97 C p date: 1994

Owner name: Deirup, J.e.

Other info: Drilling method: Drilled; Known well depth

 Xcoord:
 221040.91

 Ycoord:
 4697272

 Hlink:
 Not Reported

 Site id:
 IAPU30000014094

AJ187
SSW
IA WELLS
IAPU30000014081
1 - 2 Miles

TC4434731.2s Page A-86

 Mapid:
 14081
 Wellid:
 35752

 Id src fld:
 wnumber
 Datasrc:
 GEOU

Well type: IGS well database Location: T. 87N., R. 48W., Sec. 1, SW, NW, NW

 County:
 WOODBURY
 Est loc ac:
 Calc. +/- 140 m.

 Depth:
 94
 C p date:
 08/10/1993

Owner name: DEIRUP, JOHN
Other info: Well type: Private
Xcoord: 221036.91
Ycoord: 4697270.06

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=35752

Site id: IAPU30000014081

AJ188
SSW
IA WELLS IAPR30000071943
1 - 2 Miles

Higher

Higher

Recordno: 71943 87 Twp: Ns: N Rge: 48 W Ew: Sec: 1 Qqqqq: SW NW NW Q abc: **CBB** Checked: jswan 08/07/00 15:07:52 Ownerfirst: J.E.

Ownerlast: DEIRUP Owneraddr: 2276 ALLISON AVE.

Ownercity: SERGEANT BLUFF Ownerst: IA

 Ownerzip:
 51054
 Ownerphone:
 7129435117

 County:
 97
 Legal:
 NWNWSW 1 8748W

 County:
 97
 Legal:
 NWI

 Depth:
 97
 Dpth rel:
 K

Permit: Not Reported Sampldte: 06-JUN-00

Lab: IA024

Lab no: Not Reported

Anal dte: 30-DEC-99 Smplsrce: NOT GIVEN Bact ltb: Not Reported Bact bgb: Not Reported

 Bactr:
 Not Reported
 Bact:
 0

 Bctcolml:
 0
 Bact s u:
 S

 No3r:
 Not Reported
 No3:
 0

 No3 s u:
 S
 Nitrogen:
 .100000001490116

 Drl mthd:
 DRILLED
 Drlmth rel:
 Not Reported

 Case mat:
 PLASTIC
 Cs mt rel:
 Not Reported

 Case diam:
 8
 Csdia rel:
 K

Year cons: 1994 Yr rel: K

Agentfirst: Not Reported Agentlast: Not Reported

Created: kmckine 08/02/00 15:42:27 Updated: jswan 08/07/00 15:07:52

Utm x: 221054.5 Utm y: 4697055.81 Site id: IAPR30000071943

Site id: IAPR30000071943

189
NNE
1 - 2 Miles

IA WELLS
IAPU30000012778

TC4434731.2s Page A-87

 Mapid:
 12778
 Wellid:
 1573

 Id src fld:
 Wnumber
 Datasrc:
 PUB

Well type: Public wells Location: T. 88N., R. 47W., Sec. 30

 County:
 Woodbury
 Est loc ac:
 Meas. +/- 230'

 Depth:
 279
 C p date:
 05/01/1942

Owner name: Sioux City, City Of

Other info: Local name: Sioux City Airport #1; Status: Not Used

Xcoord: 222792.79 Ycoord: 4700815.52

Hlink: http://www.igsb.uiowa.edu/webapps/geosam/Scripts/geocard.asp?wnumber=1573

Site id: IAPU30000012778